Analisis Komparasi *Quantity Take Off* Menggunakan *Software* Autodesk Revit Dengan Metode Konvensional (Studi Kasus: Proyek Pembangunan Aspol Sanglah T.36 Bertingkat 4 Lantai)

I Nyoman Duta Ardiyasa^{1*}, Ir. I Nyoman Suardika, MT.², dan I Nyoman Ardika, ST., MT.³

¹ D4 Manajemen Proyek Konstruksi, Jurusan Teknik Sipil, Politeknik Negeri Bali

² D4 Manajemen Proyek Konstruksi, Jurusan Teknik Sipil, Politeknik Negeri Bali

³ D4 Manajemen Proyek Konstruksi, Jurusan Teknik Sipil, Politeknik Negeri Bali

E-mail : <u>dutaardiyasa3@gmail.com</u>

Abstrak

Perhitungan volume pekerjaan (*quantity take off*) sebagian besar menggunakan metode konvensional yang notabene memerlukan waktu dan tenaga kerja yang cukup banyak. Untuk mengurangi jumlah tenaga kerja dan mengefisienkan waktu ada cara lain yang dapat digunakan salah satunya dengan menggunakan metode *Building Information Modeling* (BIM). Pada penelitian ini penulis melakukan komparasi hasil perhitungan volume beton dan tulangan antara metode konvensional dan metode *Building Information Modeling* (BIM) dengan menggunakan *software* Autodesk Revit, untuk mengetahui seberapa besar perbedaan volume yang dihasilkan. Penulis melakukan analisis terhadap volume pekerjaan elemen struktur beton dan tulangan pada proyek Pembangunan Rusun Aspol Sanglah T.36 Bertingkat 4 Lantai. Setelah dilakukan analisis yang mendalam terhadap perhitungan volume beton menggunakan *software* Autodesk Revit memiliki selisih sebesar 0,003% dari perhitungan yang dilakukan dengan metode konvensional, untuk volume tulangan sengkang memiliki selisih sebesar 0.092%, dan untuk volume tulangan secara keseluruhan mendapatkan selisih sebesar 1.586% ini disebabkan karena Autodesk Revit 2021 belum dapat menghitung overlap tulangan secara otomatis pada tulangan menghasilkan hasil analisis tersebut penggunaan Autodesk Revit dalam perhitungan volume beton dan tulangan menghasilkan hasil yang akurat. Penyedia jasa dapat menggunakan Autodesk Revit guna mendapatkan keuntungan dalam hal penghematan waktu dan penggunaan sumber daya manusia (SDM). **Kata Kunci** : *Building Information Modeling*, Autodesk Revit, Volume beton dan tulangan, *Quantity Take Off.*

Abstract

The calculation of the volume of work (quantity take off) mostly uses conventional methods which in fact require quite a lot of time and manpower. To reduce the number of workers and streamline time, there are other ways that can be used, one of which is the Building Information Modeling (BIM) method. In this study, the authors compare the results of the calculation of the volume of concrete and reinforcement between the conventional method and the Building Information Modeling (BIM) method. In this study, the authors compare the results of the calculation of the volume of concrete and reinforcement between the conventional method and the Building Information Modeling (BIM) method using software, to find out how big the difference in volume is. The author conducts an analysis of the volume of work of concrete and reinforcing structural elements in the construction project of Rusun Aspol Sanglah T.36 with 4 floors. After an in-depth analysis of the calculation of the volume of concrete using Autodesk Revit software shows a difference of 0.003% from the calculations carried out by the conventional method, for the volume of reinforcing stirrups has a difference of 0.092%, and for the volume of reinforcement as a whole get a difference of 1.586% This is due to Autodesk Revit 2021 has not been able to calculate the overlap reinforcement automatically for the main reinforcement. Based on the results of the analysis, the use of Autodesk Revit in calculating the volume of concrete and reinforcement produces accurate results. Service providers can use Autodesk Revit to get benefits in terms of saving time and using human resources (HR).

Keywords : Building Information Modeling, Autodesk Revit, Volume of concrete and reinforcement, Quantity Take Off.

Pendahuluan

Perhitungan volume pekerjaan dengan menggunakan metode manual membutuhkan waktu yang cukup lama dan sering terjadi kesalahan (*human error*) pada proses perhitungan, perubahan desain pada proses konstruksi juga mengakibatkan volume pekerjaan ikut berubah. Seiring perkembangan dan inovasi teknologi pada konstruksi, maka diciptakanlah sistem *Building Information Modeling* (BIM). Penggunaan BIM dalam proyek konstruksi mulai dari proses perencanaan sampai proses pekerjaan selesai, BIM mampu mengambil informasi dari pemodelan bangunan. Penerapan BIM pada sebuah proyek mempu memberikan keberhasilan dalam manajemen pembiayaan sebuah proyek konstruksi [1].

Dalam mendukung dan meningkatkan penggunaan BIM di Indonesia pada tahun 2018 Pemerintah Kementerian PUPR RI mengeluarkan Peraturan Menteri Nomor 22 Tahun 2018, dimana isinya mengatur Implementasi BIM pada pelaksanaan proyek pembangunan bangunan gedung negara, serta penggunaan BIM wajib diterapkan pada bangunan gedung negara tidak sederhana dengan kriteria luas diatas 2000 m2 dan di atas 2 lantai [2].

Analisis *Quantity Take Off* terhadap elemen struktur memerlukan waktu yang lama dan tenaga kerja yang banyak sehingga perlu memanfaatkan teknologi yang ada salah satunya adalah menggunakan *software* Autodesk Revit 2021. Autodesk Revit dapat melakukan *quantity take-off* dengan baik dan memiliki beberapa kelebihan seperti, memiliki efisiensi terhadap waktu karena dapat menghitung volume dengan lebih cepat dibandingkan dengan metode sebelumnya, apalagi bila terdapat perubahan desain [3]. Untuk mengifisienkan waktu dan penggunaan tenaga kerja dalam proses perhitungan volume beton dan tulangan pada elemen struktur maka rumusan masalah yang dapat diambil menjadi objek penelitian adalah seberapa besar perbedaan *quantity take off* beton dan tulangan pada elemen struktur antara metode konvensional dan metode *Building Information Modeling* (BIM) menggunakan Autodesk Revit 2021 pada Proyek Pembangunan Rusun Aspol Sanglah T.36 Bertingkat 4 Lantai.

Metode

Metode penelitian yang digunakan dalam penilitan ini adalah metode deskriptif komparatif dimana jenis penelitian ini bertujuan untuk membandingkan hasil perhitungan antara *software* Autodesk Revit dengan metode konvensional. Penelitian ini diawali dengan menentukan lokasi dan mengumpulkan data sekunder. Lokasi yang dipilih dalam penelitian ini adalah Proyek Pembangunan Rusun Aspol Sanglah T.36 Bertingkat 4 Lantai. Data sekunder yang dikumpulkan berupa Gambar Kerja dan Rencana Anggaran Biaya (RAB), Selanjutnya dilakukan perhitungan elemen struktur beton dan tulangan untuk dilakukan perhitungan metode konvensional dan metode *Building Information Modeling* (BIM) dengan menggunakan *software* Autodesk Revit 2021. Kemudian hasil perhitungan dari kedua metode tersebut bandingkan, akhir dari penelitian ini mendapatkan besar perbedaan dari hasil perhitungan kedua metode yang digunakan, sehingga dapat disimpulkan metode mana yang lebih efektif dan akurat.

Hasil dan Pembahasan

A. Perhitungan Metode Konvensional

Perhitungan metode konvensional dilakukan dengan menggunakan bantuan Autocad dan Microsoft Excel. Berikut merupakan salah satu contoh perhitungan volume elemen struktur pondasi bore pile dengan menggunakan metode konvensional.

Diketahui dimensi dan persyaratan dari Pondasi Bore Pile adalah sebagai berikut :

Dimensi beton pondasi type P1

- Panjang pondasi = 11 m
- Diameter pondasi = 0,6 m
- Selimut beton = 0,075 m
 - Jumlah pondasi = 76 bh

Dimensi tulangan pondasi type P1

- Diameter tulangan utama = D19
- Jumlah tulangan utama = 12
- Diameter tulangan begel = D13 150

Gambar detail pondasi bore pile

Gambar 1. Detail Bore Pile

Perhitungan Volume Beton

Volume Beton pondasi bore pile $V_{Bp} = \pi \times r^2 \times panjang \ bore \ pile$ $V_{Bp} = \frac{22}{7} \times 0.3 \times 11$ $V_{Bp} = 3.111 \ m^3$ Vol. total beton pondasi bore pile $V_{ttlBp} = V_{Bp} \times jml. \ pondasi \ bore \ pile$ $V_{ttlBp} = 3.111 \ m' \times 76$ $V_{ttlBp} = 236.469 \ m^3$ Perhitungan Tulangan Utama

Panjang tul. utama 1 bore pile
$$L = (a + b + c) \times jml. tul.$$

 $L = (10,91756 + 0,95 + 0,01492) \times 12$
 $L = 11.882 m' \times 12$
 $L = 142.590 m'$
Panjang total tul. Utama
 $L_{ttl} = Panjang tul. \ 1 Bp \times jumlah \ bore \ pile$
 $L_{ttl} = 142.590 m' \times 76$
 $L_{ttl} = 10836.822 m'$

Perhitungan Tulangan Begel

Panjang Tulangan begel

$$L = \sqrt{\left(\pi \times \frac{h}{h_1} \times D_{lilitan \ begel}\right)^2 + h^2}$$

$$L = \sqrt{\left(\pi \times \frac{11}{0.15} \times 0.437\right)^2 + 11^2}$$

$$L = 100,467 \ m'$$

*Catatan karena panjang besi begel spiral lebih dari 12 meter, maka besi tersebut perlu ditambahkan overlap sambungan, karena panjang maksimum 1 batang besi adalah 12 m'

Jumlah overlap

$$n_{overlap} = \left(\frac{pan jang sengkang}{pan jang besi max}\right) - 1$$

$$n_{overlap} = \left(\frac{100,467 m'}{12 m'}\right) - 1$$

$$n_{overlap} = 7,372 \rightarrow 8 bh$$
Panjang overlap

$$L_{overlap} = jumlah overlap \times (40 \times D_{besi})$$

$$L_{overlap} = 8 \times (40 \times 13 mm)$$

$$L_{overlap} = 4,16 m'$$
Panjang besi untuk 1 bore pile $L_{1begel} = pan jang begel + pan jang overlap$

$$L_{1begel} = 100,467 m' + 4,16 m'$$

$$L_{1begel} = 104,627 m'$$
Panjang total begel

$$L_{ttlbegel} = pan jang 1 begel \times jml. bore pile$$

$$L_{ttlbegel} = 7951.614 m'$$

Dimana hasil rekapan dari perhitungan metode konvensional dapat dilihat pada tabel berikut:

	Tuber 1. Hush I ethiltungun Deton Metode Honvenstonal			
No	No Uraian		Volume (m3)	
Α	St	ruktur Pondasi		
	а	Pondasi Bore Pile	236.469	
	b	Pondasi Pile Cap Type P1	9.000	
	с	Pondasi Pile Cap Type P2	126.000	
	d	Pondasi Pile Cap Type P3	81.440	
В	St	ruktur Kolom		
	а	Kolom Type K1	12.760	
	b	Kolom Type K2	111.650	

Tabel 1. Hasil Perhitungan Beton Metode Konvensional

С	St	ruktur Balok	
	1	Level 1	
		a Balok Sloof Type TB1	43.600
	2	Level 2	
		a Balok Type B1	15.192
		b Balok Type B2	71.280
		c Balok Type BA1	27.075
	3	Level 3	
		a Balok Type B1	15.192
		b Balok Type B2	68.685
		c Balok Type BA1	26.775
	4	Level 4	
		a Balok Type B1	15.192
		b Balok Type B2	70.755
		c Balok Type BA1	26.975
	5	Level Dak Atap	
		a Balok Type B1	15.192
		b Balok Type B2	35.235
		c Balok Type B3	32.094
		d Balok Type BA1	3.963
	6	Level Ring Balok	
		a Balok Type RB1	12.960

Tabel 2. Hasil Perhitungan Tulangan Metode Konvensional

No	Uraian		Volume	
140			(kg)	
Α	Sti	Struktur Pondasi		
	a	Pondasi Bore Pile	32438.950	
	b	Pondasi Pile Cap	21200.987	
B	Struktur Kolom			
	a	Kolom	40846.459	
С	Struktur Balok			
	1	Level 1		
		a Balok Sloof Type TB1	7669.006	
	2	Level 2		
		a Balok Type B1	4032.939	
		b Balok Type B2	21637.815	
		c Balok Type BA1	4391.386	
	3	Level 3		
		a Balok Type B1	4080.142	
		b Balok Type B2	20874.537	
		c Balok Type BA1	4373.392	
	4	Level 4		
		a Balok Type B1	4080.142	
		b Balok Type B2	21047.089	
		c Balok Type BA1	4425.905	
	5	Level Dak Atap		
		a Balok Type B1	4080.142	
		b Balok Type B2	10625.849	
		c Balok Type B3	7832.425	
		d Balok Type BA1	885.395	
	6	Level Ring Balok		
		a Balok Type RB1	2520.282	

B. Pemodelan dengan Software Autodesk Revit 2021

Pemodelan dilakuan dengan menggunakan Autodesk Revit 2021 dimana pemodelan mengacu pada gambar kerja Proyek Pembangunan Aspol Sanglah T.36 Bertingkat 4 Lantai. Pemodelan ini bertujuan untuk menghitung volume beton dan tulangan dari elemen struktur.

Pemodelan dengan *software* Autodesk Revit dimulai dari pembuatan Grid dan elevasi untuk mempermudah proses pemodelan elemen struktur. Kemudian dilanjutkan dengan melakukan pemodelan elemen struktur pondasi, kolom, dan balok dengan ukuran dan posisi sesuai dengan gambar kerja. Setelah semua elemen struktur dimodelkan dilanjutkan dengan melakukan pemodelan rebar atau tulangan. Tahap yang terakhir yaitu memunculkan hasil perhitungan volume beton dan tulangan yang telah dibuat. Berikut merupakan hasil perhitungan volume beton dan tulangan metode *Building Information Modeling* (BIM) dengan *software* Autodesk Revit.

Gambar 1. Pemodelan Elemen Stuktur Beton

Gambar 2. Pemodelan Tulangan Elemen Stuktur

Gambar 3. Contoh Hasil Perhitungan Volume Pada Autodesk Revit

No	Uraian	Volume
		(m3)
Α	Struktur Pondasi	
	a Pondasi Bore Pile	236.370
	b Pondasi Pile Cap Type P1	9.000
	c Pondasi Pile Cap Type P2	126.000
	d Pondasi Pile Cap Type P3	81.440
B	Struktur Kolom	
	a Kolom Type K1	12.760
	b Kolom Type K2	111.650
С	Struktur Balok	
	1 Level 1	
	a Balok Sloof Type TB1	43.600
	2 Level 2	
	a Balok Type B1	15.192
	b Balok Type B2	71.280
	c Balok Type BA1	27.075
	3 Level 3	
	a Balok Type B1	15.192
	b Balok Type B2	68.685
	c Balok Type BA1	27.775
	4 Level 4	
	a Balok Type B1	15.192
	b Balok Type B2	70.755
	c Balok Type BA1	26.975
	5 Level Dak Atap	
	a Balok Type B1	15.192
	b Balok Type B2	35.235
	c Balok Type B3	32.094
	d Balok Type BA1	3.963
	6 Level Ring Balok	
	a Balok Type RB1	12.960

Tabel 3. Hasil Perhitungan Beton MetodeBuilding Information Modeling (BIM)

Tabel 4. Hasil Perhitungan Beton TulanganBuilding Information Modeling (BIM)

No	Uncion	Volume	
INO	Uraian	(kg)	
Α	Struktur Pondasi		
	a Pondasi Bore Pile	32389.704	
	b Pondasi Pile Cap	21726.617	
В	Struktur Kolom		
	a Kolom	39717.695	
С	Struktur Balok		
	1 Level 1		
	a Balok Sloof Type TB1	7633.195	
	2 Level 2		
	a Balok Type B1	4018.461	
	b Balok Type B2	21042.250	
	c Balok Type BA1	4442.004	
	3 Level 3		
	a Balok Type B1	3866.955	
	b Balok Type B2	21130.291	

	c Balok Type BA1	4452.963
4	Level 4	
	a Balok Type B1	4018.463
	b Balok Type B2	20810.161
	c Balok Type BA1	4443.725
5	Level Dak Atap	
	a Balok Type B1	4018.461
	b Balok Type B2	10321.023
	c Balok Type B3	7735.151
	d Balok Type BA1	880.842
6	Level Ring Balok	
	a Balok Type RB1	2495.601

C. Komparasi Hasil Perhitungan Volume Beton dan Tulangan

Setelah selesai dilakukan perhitungan volume beton dan tulangan dengan metode konvensional dan metode *Building Information Modeling* (BIM) dengan *software* Autodesk Revit. Untuk mengetahui seberapa besar perbedaan hasil dari perhitungan kedua metode tersebut komparasi disajikan dalam bentuk tabel sebagai berikut:

Tabel 5. Komparasi *Quantity Take Off* Beton Hasil Metode Konvensional dan *Software* Autodesk Revit

		Volume	Volume	
No	Uraian	Konvensional	Revit	Deviasi
		(m ³)	(m ³)	
1	Struktur Pondasi			
а	Pondasi Bore Pile	236.469	236.370	0.042%
b	Pondasi Pile Cap Type P1	9.000	9.000	0.000%
с	Pondasi Pile Cap Type P2	126.000	126.000	0.000%
d	Pondasi Pile Cap Type P3	81.440	81.440	0.000%
2	Struktur Kolom			
a	Kolom Type K1	12.760	12.760	0.000%
b	Kolom Type K2	111.650	111.650	0.000%
3	Struktur Balok			
	Level 1			
a	Balok Sloof Type TB1	43.600	43.600	0.000%
	Level 2			
a	Balok Type B1	15.192	15.192	0.000%
b	Balok Type B2	71.280	71.280	0.000%
с	Balok Type BA1	27.075	27.075	0.000%
	Level 3			
a	Balok Type B1	15.192	15.192	0.000%
b	Balok Type B2	68.685	68.685	0.000%
с	Balok Type BA1	26.775	26.775	0.000%
	Level 4			
a	Balok Type B1	15.192	15.192	0.000%
b	Balok Type B2	70.755	70.755	0.000%
с	Balok Type BA1	26.975	26.975	0.000%
	Level Dak Atap			
a	Balok Type B1	15.192	15.192	0.000%
b	Balok Type B2	35.235	35.235	0.000%
с	Balok Type B3	32.094	32.094	0.001%
d	Balok Type BA1	3.963	3.963	0.013%
	Level Ring Balok			
а	Balok Type RB1	12.960	12.960	0.000%
	••		Rata-rata	0.003%

		Volume	Volume	
No	Uraian	Konvensional	Revit	Deviasi
		(kg)	(kg)	
1	Struktur Pondasi			
а	Pondasi Bore Pile	8272.837	8245.278	0.333%
2	Struktur Kolom			
а	Kolom Type K1	14852.109	14842.241	0.066%
3	Struktur Balok			
	Level 1			
a	Balok Sloof Type TB1	2465.173	2463.537	0.066%
	Level 2			
а	Balok Type B1	1230.949	1231.691	0.060%
b	Balok Type B2	6045.291	6049.440	0.069%
с	Balok Type BA1	1549.117	1549.116	0.000%
	Level 3			
а	Balok Type B1	1230.949	1231.691	0.060%
b	Balok Type B2	5825.138	5855.929	0.529%
с	Balok Type BA1	1531.123	1531.123	0.000%
	Level 4			
а	Balok Type B1	1230.949	1231.693	0.060%
b	Balok Type B2	5997.690	6001.807	0.069%
с	Balok Type BA1	1544.209	1544.209	0.000%
	Level Dak Atap			
a	Balok Type B1	1230.949	1231.691	0.060%
b	Balok Type B2	2989.920	2994.949	0.168%
с	Balok Type B3	3068.653	3069.532	0.029%
d	Balok Type BA1	238.829	238.829	0.000%
	Level Ring Balok			
a	Balok Type RB1	945.449	945.460	0.001%
			Rata-rata	0.092%

Tabel 6. Komparasi Quantity Take Off Tulangan Begel HasilMetode Konvensional dan Software Autodesk Revit

Tabel 7. Komparasi Quantity Take Off Tulangan Hasil

 Metode Konvensional dan Software Autodesk Revit

		••••••••••••••••••••••••••••••••••••••	T7 1	
		Volume	Volume	
No	Uraian	Konvensional	Revit	Deviasi
		(kg)	(kg)	
1	Struktur Pondasi			
a	Pondasi Bore Pile	32438.950	32389.704	0.152%
b	Pondasi Pile Cap Type P1	21200.987	21726.617	2.479%
2	Struktur Kolom			
a	Kolom Type K1	40846.459	39717.702	2.763%
3	Struktur Balok			
	Level 1			
a	Balok Sloof Type TB1	7669.006	7633.195	0.467%
	Level 2			
a	Balok Type B1	4032.939	4018.461	0.359%
b	Balok Type B2	21637.815	21042.250	2.752%
с	Balok Type BA1	4391.386	4442.004	1.153%
	Level 3			
a	Balok Type B1	4080.142	3866.955	5.225%
b	Balok Type B2	20874.537	21130.291	1.225%
с	Balok Type BA1	4373.392	4452.963	1.819%
	Level 4			
а	Balok Type B1	4080.142	4018.463	1.512%

			Rata-rata	1.586%
а	Balok Type RB1	2520.282	2495.601	0.979%
	Level Ring Balok			
d	Balok Type BA1	885.395	880.842	0.514%
с	Balok Type B3	7832.425	7735.151	1.242%
b	Balok Type B2	10625.849	10321.023	2.869%
а	Balok Type B1	4080.142	4018.461	1.512%
	Level Dak Atap			
с	Balok Type BA1	4425.905	4443.725	0.403%
b	Balok Type B2	21047.089	20810.161	1.126%

Simpulan

Berdasarkan hasil penelitian yang telah dilakukan terhadap perhitungan volume beton menggunakan metode *Building Information Modeling* (BIM) dengan *software* Autodesk Revit memiliki selisih sebesar 0,003% dari perhitungan yang dilakukan dengan metode konvensional, untuk volume tulangan sengkang memiliki selisih sebesar 0.092%, dan untuk volume tulangan secara keseluruhan mendapatkan selisih sebesar 1.586% ini disebabkan karena Autodesk Revit 2021 belum dapat menghitung overlap tulangan secara otomatis pada tulangan utama. Dari hasil penelitian tersebut dapat disimpulkan secara umum penggunaan metode *Building Information Modeling* (BIM) dengan Autodesk Revit dapat melakukan pemodelan elemen struktur beton dan tulangan secara 3D dan langsung dapat menghasilkan volume secara otomatis dan akurat sehingga mempercepat proses perhitungan volume beton dan tulangan. Dalam penggunaan Autodesk Revit jika terdapat perubahan pada gambar maka perhitungan volume juga akan berubah. Pada dasarnya Autodesk Revit akan menghitung volume dari semua objek yang telah dibuat.

Dari hasil penelitian yang telah dilakukan maka saran yang dapat diberikan adalah untuk mendapatkan keuntungan yang lebih dalam hal penghematan waktu dan tenaga kerja dalam perhitungan volume beton dan tulangan sebaiknya penyedia jasa konstruksi menggunakan metode *Building Information Modeling* (BIM) dalam perhitungan volume tersebut dan pada dunia akademisi penambahan kurikulum atau matakuliah *Building Information Modeling* (BIM) akan sangat membantu mahasiswa dan pemerintah guna mewujudkan dan mempercepat penerapan *Building Information Modeling* (BIM) dalam dunia konstruksi di Indonesia.

Ucapan Terima Kasih

Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena telah memberikan kemampuan dan kesempatan kepada kami untuk menyelesaikan artikel ini. Kami juga mengucapkan terima kasih kepada para dosen, pemberi data dan teman-teman atas dukungan, kesabaran, kontribusi, dan masukannya yang berharga sehingga artikel ini dapat diselesaikan.

Referensi

- [1] Simanjuntak, M. R., & Baskoro, A. T. (2020). Kajian Faktor–Faktor Manajemen Pembiayaan Proyek Dalam Implementasi BIM Pada Proyek Bangunan Gedung. *SNITT-Politeknik Negeri Balikpapan*.
- [2] Peraturan Menteri PUPR. (2018). Nomor 22/PRT/M/2018 Tentang Pembangunan Bangunan Gedung Negara.
- [3] Laorent, D., Nugraha, P., & Budiman, J. (2019). Analisa Quantity Take-Off Dengan Menggunakan Autodesk Revit. *Dimensi Utama Teknik Sipil, Vol.6 No.1*.