data storage

by Ari Sukarsa

Submission date: 15-Aug-2022 12:27PM (UTC+0700)
Submission ID: 1882651947

File name: versi_kirim_juli_2022.docx (711.99K)
Word count: 5307

Character count: 29950

Indonesian Journal of Electrical Engineering and Computer Science
Vol. 99, No. 1, Month 2099, pp. 1~1x
ISSN: 2502-4752, DOL: 10.11591/ijeecs.v99.i1.ppl-1x a

T

Data Storage Model in Low-Cost Mobile Applications

1 Made Sukarsa', I Kadek Ari Melinia Antara?, Putu Wira Buana®1 Putu Agung Bayupati*, Ni Wayan

Wisswani®, Dina Wahyuni Puteri®
12348 Department of Information Technology, Udayana University
* Department of Informatic Management, Bali State Polytechnic

Article Info

ABSTRACT

Article history:

Received month dd, yyyy
Revised month dd, yyyy
Accepted month dd, yyyy

Keywords:

Cloud Firestore

Mobile applications that have data transactions between users require a
database (RDBMS) and RESTful API operating on the hosting service so that
all users can access the data. Renting a hosting service is not cheap and
creating a RESTful API takes plenty of time. As an alternative to hosting, a
free version of the Cloud Firestore service gives full access rights o the
database and has an API to manage data or access data. However, the free
version of Cloud Firestore has limitations in terms of storage capacity, read,
write, and delete prqilsses. Therefore, redesigning process of the database
was carried out into w-cost version of the database model consisting of
SQLite database and a low-cost version of the NoSQL database to overcome

D““'P““ this problem. The goal is to reduce storage space usage and read, write, and
SQLite delete processing on Cloud Firestore. The low-cost version of the database
NoSQL was tested with 6030 data. The results obtained were savings of 47.27%
Hosting storage usage, 83 08% write usage, 91 26% read process usage, and 83.19%
Low Cost delete process usage compared to the test results of the relational database
model.
This is an open access article under the CC BY-SA license.
m
Corresponding Author:
I Made Sukarsa

Department of Information Technology

Udayana University

UNUD Campus Road, Jimbaran, Badung, Bali, Indonesia
Email: sukarsa@unud.ac.id

1. INTRODUCTION

Mobile applications are software that allows for mobility using mobile devices[1]. Mobile
applications require data transactions to a relational database (RDBMS) via a RESTful API. A good application
design must pay attention to database and API design so that optimally synchronization and integration can be
carried out [2]. Efficiency in data processing is a challenge in application development, synchronization,
integration, and concurrency, which is strongly influenced by processing activities (read, write, delete)[3][4].
The goal is to produce a light/fast, and efficient application in database usage.

Database creation and Restful API are key in the data management process in an application [5].
Hosting services are required so all applic;lti(@scrs can access that data. Creating or renting ila)sting service
requires a fee that is not cheap unless you use the free version of the hosting service. Generally, the free version
of the hosting service has several drawbacks; it does not provide full access rights to the database, and the
server used has the potential to collapse [6].

API (Application Programming Interface) is a software interface used to facilitate the data exchange
between two or more software applications [7]. The RESTful API implements the REST (Representational
State Transfer) architecture to develop web services [8]. According to its function, RESTﬂ APIs are often
called RESTful web services or REST web services. The REST architecture is run via HT'TP (Hypertext
Transfer Protocol) and reads XML (Extensible Markup Language) or JSON (JavaScript Object Notation) files
on web pages [9][10]. The performance of REST web services has been studied to work efficiently both on

Journal homepage: hitp:/lijeecs.iaescore .com

2

m) ISSN: 2502-4752

local services and cloud servers, especially on mobile devices [11]. RESTful APIs can be built using various
frameworks and programming languages, where the implementation process takes a long time depending on
the data transaction processes that occur in an application [12].

The database becomes a data storage container in making mobile and web applications. The popular
database technology used nowadays is the Relational Database Management System (RDBMS). RDBMS has
structured data in tables (rows and columns) and has relations between tables connected through primary and
foreign keys [13]. RDBMS is the right choice when the type of data used is structured, but if the kind of data
used is unstructured and requires high response and speed, the solution that can be used is the NoSQL database
[14].

NoSQL (Not Only SQL) is a database system that does not have to use SQL (Structured Query
Language) commands to perform the data manipulation process [15]. NoSQL, in its practice, is an efficient
choice for simplicity, high work analytics, distributed scalability, and good adaptability, which certainly makes
the process of storing and retrieving data easier [15]. Furthermore, the performance of query execution speed
and the use of NoSQL database storage using MongoDB and Redis has been researched to be better than
RDBMS with the percentage of processing time in the range of nanoseconds or milliseconds [16][17]. RDBMS
and NoSQL have their respective advantages based on the type of data that needs to be used. Combining SQL
and NoSQL databases can produce more flexible and scalable database management because NoSQL can
maximize large amounts of data processing more effectively [18].

Mobile application development includes various aspects in the implementation process, which will
undoubtedly require no small expenditure if calculated in terms of costs [19]. Thus, the main focus of this
research is minimizing the costs incurred in the application development process but still focusing on the
efficiency of memory usage and data processing. One of the Firebase services, namely the {ree version of Cloud
Firestore, can solve development costs, memory, and processing time efficiency problems.

Cloud Firestore is specifically reviewed as being able to be used for non-relational database
implementations on mobile devices because it supports mobile client implementations while also can make
integration into hosted databases relatively easier [20]. The Cloud Firestore service provides full access rights
to the NoSQL database. It has an API to manage data to facilitate data storage, synchronization, and querying
data on mobile applications [21]. Cloud Firestore uses a NoSQL database by storing data in collections
containing a collection of documents containing data containing keys and values [22]. As a result, cloud
Firestore has further complete and faster query features than Realtime Database services [23]. In addition to
the advantages, the free version of Cloud Firestore also has limitations in storage capacity, read, write, and
delete processes. Referring to the conditions provided by the Cloud Firestore website as of early November
2021, the storage capacity is only 1GB, the read process is limited to 50 000 requests per day, the write process
is limited to 20,000 requests per day, and the delete process is limited to 20,000 requests per day. If the process
or storage area exceeds the usage limit that has been set, it will be charged according to the provisions of the
Cloud Firestore service [24]. Thus, these problems can be overcome by redesigning the relational database
model into a low-cost version of the database model.

The redesign process in this research uses a low-cost version of the NoSQL database and the SQLite
database. SQLite database is used as a data storage medium that can operate locally [25]. The purpose of
creating a low-cost version of the database model is to reduce the use of storage and processing (read, write
and delete) on the Cloud Firestore service; thereby, it can save on data storage and processing costs.
Denormalization will be involved in the migration process from RDBMS to NoSQL, followed by Optimization
to get an optimal database design on Cloud Firestore [26]. The optimization process is carried out to eliminate
redundancy and ambiguity in the data caused by the denormalization process. In principle, there is no specific
method for denormalizing [27].

2. METHOD

The research was conducted by creating a low-cost version of the database model obtained from
redesigning the relational database model (RDBMS). The research flow started from the creation of the SQLite
database by determining data that can operate locally and not be used for data transactions between users. In
contrast, other data or tables will be converted into a low-cost version of the NoSQL database model. These
two databases will be the low-cost version of the database model. The research continued with the testing
process of the relational database model and the low-cost version of the database on Cloud Firestore.
Fmﬂrm(n’c. the test results were analyzed and compared. The research flow in the form of a flowchart can
see in Figure 1.

Indonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 m) 3

501 database
narmalzatan
moded

Denarmalza tan af the
refatonal database maded 103
low-costv emian database
moded

Can be operated
Iacally

Law-castvemion
7 databuse model

Testng e relational
catabiase model and the low
cost wemion database moded

Analyze e test rewits

Database SQUMe [wf—Yex

Figure 1. Research Flow

2.1. Relational Database Model

Relational database model is a database structure that has been normalized to a certain level and has
a relationship between tables. Normalization is a technique for forming database structures so that most of the
ambiguity and data redundancy can be eliminated [28]. The existence of non-constant data will undoubtedly
affect the conceptual design of the designed database. Thus the task of normalization becomes very important
in the database design process [29]. The relational database created contains five tables related to each other
and has their respective functions. User’s favorite item data is stored in th_favorite, user data is stored in
th_user, item data is stored in th_barang, sales transaction data is stored in th_transaksi, and every detail of
the sales amount of goods will be stored in th_detail_transaksi. The relational database design in Figure 2 will
redesign to a low-cost version of the database model.

o msar
M _teverte it ﬁ "
B e | ™ mama Varchar(253)
R _barang -t alamat Varchar(23%)
motelp Varcharzo)
th detal transaks eman Varchar(zss)
P 1 detail transaksi | bigint
1 th_transaks|
¥ 14 transabsi bigiet |
i tramsaksi int
¥ id_barasg it .
i user !
Jumtan i Fiduse "
tanggal aateti
harga just e s atetime
diskon int
th_barasy
total harga Int

Wode barang Varchas(10)

nama barang Warchar(is8)

Juemiah it
satunn Varehar{S0)
narga Barang mr
harga jual e

Figure 2. Relational Database Model

Paper’s should be the fewest possible that accurately describe ... (First Author)

4 m) ISSN: 2502-4752

2.2. Redesign Process for Database Optimization

The low-cost version of the database model uses two types of databases, namely SQLite databases to
store data that can operate locally and are not used for data transactions between users and a low-cost version
of the NoSQL database to be used on Cloud Firestore.

SQLite database is an alternative Relational Database Management System that does not require an
installation process since it is free and supported by many programming languages [30][31]. SQLite can define
as SQLite database used to store constant data on the final application, where the stored data is data that rarely
changes or is static to avoid frequent interactions with the server [32]. Th_favorite is built on SQLite database
because the data in the table can be processed and operated locally and not used for data transactions between
users which is illustrated in Figure 3(a). Th_transaksi and th_detail_transaksi are created in the NoSQL
database by denormalizing the two tables that have foreign keys. Denormalization is conducted by modifying
the table structure and ignoring (controlled) duplicate data to improve database performance [33]. Changes that
oceur in th_transaksi after denormalization are the column replacement and addition. The id_user column is
removed and replaced with the name, address, no_relp, and email columns. Additional columns are used to
store detailed item information in th_transaksi, namely kode_barang, nama_barang, jumlah and harga_jual
as illustrated in Figure 3(b).

Optimization of the data structure is carried out to minimize ambiguity and redundancy in the data. Cloud
Firestore has a data type in the form of an array that can be used to store data or transaction detail information
without causing redundancy or ambiguity in the data. Fields used to store user information, and item
information can be made into two different fields/columns with column names data_user and data_barang
using array data types. Cloud Firestore also has a unique code that is automatically generated for each document
to distinguish one document from another. Thus, it can delete the primary key in each table to optimize storage
space. The low-cost version of the NoSQL database that will be implemented in Cloud Firestore includes three
tables, namely tb_barang, th_transaksi, and User. The data types of the low-cost version of the NoSQL
database model have been adapted to the Cloud Firestore service, where the table names in the database model
are used as collection names. Further, the column name will be used as the field name in the document where
the data is stored, as illustrated in Figure 3(c).

| th _f it ‘ th_t P th -.....rul
data_wher Brvay
B id tavorite mt | | i transaksi Int ey witeserms | e
heide barang String dishon Number
nama nEma harsng Bwing
o - (7o i |
" alamat Varchar(288) e e taomal timestame
aatusn swing
kode_barang Varchar{10) th user
no_telp ‘Varchar{20) :m. n..-:.. ::- ——
nama barang | Varchar(255)] Varchar(285) on ' atamat | oing
w0_tely | String
kode barang Varchar(10) omatt | surimy
nama barang | Varchan(268)
jumiah int
harga_jual int
diskon int
total_harga Int
tanggal datetime
(a) (b) (©

Figure 3. Database Redesign and Optimization (a) tb_favorite as SQLite Database (b) Denormalization of
th_transaksi (c) Low-Cost Version of NoSQL Database Model

23. Test Data

The total data used for testing is 6030 data. The total data consists of 10 item data, 10 user data, 10
favorite data, and 1000 transaction data, with each transaction having five types of goods. Item data will be
inputted into the tb_barang collection, user data into the th_user collection, favorite data into the th_favorite
collection, each of which will be stored in the relational database models and low-cost databases.

Transaction data will be input into the th_transaksi collection in the relational database model and the
low-cost version of the database. The storage process in the low-cost version of the database model 1s slightly
different from the relational database. In the low-cost version of the database model, the user does not have to
input id_user but instead inputs the name, address, no_telp, and email data based on the id_user. The

Indonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

a

ISSN: 2502-4752

transaction detail data that will be input into the th_detail_transaksi collection in the relational database model
includes the transaction id_transaksi, id_barang, jumlah and harga_jual barang fields. Meanwhile, in the low-
cost version of the database, the data will be input into the tb_transaksi collection in the data_barang field,
where the field contains kode_barang, nama_barang, jumlah and harga_jual.

Table 1. Th_barang

Id Kode_bry Neama_brg Jml Satuan Harga_brz Harga_jual

1 BOO1 CPU 100 Pcs 3.500.000 4.000.000

2 BOO2 Monitor 150 Pes 1.200.000 1.500.000

3 BOO3 Laptop Asus 200 Pes 5.700.000 6 .500.000

4 BOO4 Laptop Acer 100 Pes 6.200.000 7 000.000

5 BOOS Mouse 150 Pes 120.000 150 000

6 BO0G6 Keyboard 150 Pcs 200.000 250 000

7 BOO7 Printer 50 Pcs 1.250.000 1.750.000

8 BOOK Kabel USB 150 Pcs 50,000 75000

9 BOO9 Flashdisk 75 Pcs 300.000 350000

10 BO10 HDD 50 Pcs 512.000 600000

Table 2. Th_user

Id Nama Alamat No_telp email

- Jln. Mangga 5 blok D 62 RT 001 RW 003 Perumahan 177 . .
1 Aprilia kit fot 1, [it (Sl i, ey 082122365943 Aprilia@ gmail .com
2 Sd Astuti Me'ran No.88 Cilodong 081202365976 SriAstuti@gmail.com
3 Annisa E:th:w B0 N Y G perlerl o perlichb] 085322365943 Annisa@gmail.com
4 Bella ajlu kan II rt01/06 Colomadu, Karanganyar 08763759393 Bella@ gmail com

. Desa Kelet Rt 23 Rw 4 Kecamatan Keling Kabupaten 4 . .
5 Dina e i e L 087763570027 Dina@gmail.com
6 Fahdilla il tarmidi samarinda kaltim 087765691216 Fahdilla® gmail.com
7 Fitd Ayu bar RT 02/04 Laweyan, Surakarta 081933125331 Fitri. Ayn@gmail.com
8 PuriAyy joanmyaKedondonpdesa CimenukkecamalanWay (07004757301 Purri. Ayu@gmail.com
Lima kab.pesawaran

9 Hendra Banjarsari Nusukan prawit RT 06 RW 03 087864411708 Hendra@ gmail com
10 Indra Batur citrosono Grabag Magelang Jawa tengah OB1907986555 Indra@ gmail.com

Table 3. Th_favorite

Id Iel _tser Td_barang Kode_barang Nama_barang
1 1 1 BOO1L CPU
2 2 2 BOO2 Monitor
3 3 3 BOO3 Laptop Asus
4 4 4 BOO4 Laptop Acer
5 5 5 BOOS Mouse
[[[BOO6 Keyboard
7 7 7 BOO7 Printer
8 8 8 BOOS USB Cable
9 9 9 BOOY Flashdisk
10 10 10 BO10 HDD
Table 4. Th_transaksi
Id Id_user Tanggal Diskon Total_harga
1 1 2021-11-04 20:25:40 0 19.150.000
2 2 2021-11-04 19:50:04 0 15.400.000
3 3 2021-11-04 18:00:32 0 15.650.000
4 4 2021-11-04 17:40:53 0 9.225 000
5] 2021-11-04 16:55:32 0 2.575.000
6 6 2021-1 1-04 16:04:45 0 3.025 000
7 7 2021-11-04 15:55:44 0 19.150.000
8 8 2021-11-04 15:40:33 0 15400.000
9 9 2021-11-04 15:05:00 0 15.650.000
10 10 2021-11-04 14:34:05 0 9.225 000
11 1 2021-11-03 13:00:54 0 2.575.000
12 2 2021-11-03 12:04:00 0 3.025 000
dst dst dst dst dst
1000 10 2021-07-28 22:11:41 0 9.225 000
Table 5. Th_detail_transaksi
Id Td_transaksi Td_barang Jurnlak Harga_jual
1 1 1 1 4,000,000

Indonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

ISSN: 2502-4752

) 1 2
3 1 3
4 1 4
5 1 5
6 2 2
7 2 3
g 2 4
) 2 5
10 2 6
dst dst dst
5000 1000 8

1 1.500.000
1 6.500.000
1 7.000.000
1 150,000
1 1.500.000
1 6.500.000
1 7.000.000
1 150,000
1 250000
dst dst
1 75.000

Test is done by processing write data or inputting item data, user data, favorite data, transaction data,
and transaction detail data. The test is continued by reading the transaction data along with user information
and item ds. Further, do the process of delete user data along with transaction data and details. Tests are
carried out using the Python programming language and the firebase_admin library. Python is a programming
language that is widely used for the analysis process because it is dynamic, object-oriented, and has good
modularity [34]. Python also claims to be a language that combines capabilities, abilities, and an obvious code
syntax and is equipped with automatic memory management [35][36]. Python programming language also has
advantages in developing a software product with a large and extensive library [37]. Test conducts for relational
databases and a low-cost version in the Python programming language, described in the following program

code.

Relational Database Testing Program

Code

Low-Cost Version of Database
Testing Program Code

cred = credentials.certificate
("serviceAccount.json")
firebase_admin.initialize_app(cred)

db = firestore.client()

docuser = db.collection('tb_user"')
docBarang = db.collection("'tb_barang')
docFav = db.collection('tb_favorite™)
docTrx = db.collection('th_transaksi')
docDetTrx =
db.collection('tb_detail_transaksi')
#proses write data

i 0

i =
while i < 10 :
docuser.add({
"id_user': iduser[i],
"nama': Tistmamal[i],
'alamat': Tistalamat[i],
"no_telp': TistNoHp[i],
- "email': TisteEmail[i],
docBarang.add({
'id_barang’ :idBarang[i],
'kode_barang':TistKodeBrg[i],
"nama_barang':TistNamaBrg[i],
"jumlah':1istIml[i],
'satuan':"Pcs',
"harga_barang' : listHargaBrg[i],
"harga_jual' :TistHargaJuall[i],

19)

docFav.add({
"id_favorite': idrFavorite[i],
"id_user': iduser[i],

. "id_barang': idBarang[i],

i4=1

while i < 1000 :

docTrx.add({
"id_transaksi':idTransaksi[i],
"id_user':iduser[i],
"tanggal':TistTanggal[i],
'diskon':0,

- "total_harga': listTotalHargalil

i=0

while j < 5 :
docDetTrx.add({

docuser = db.colTection("th_user")
docBarang = db.collection('tbh_barang')
docTEx = db.collection('th_transaksi')
i =
#write data
while i<10 :
docUser.add({
"nama’: item,
'alamat': TistAlamat[i],
"no_telp': TistNoHp[il,
'email': TistEmail[i],

19

docBarang.add({
'kode_barang':1istkKodeBrg[i],
"nama_barang':TistNamaBrg[i],
"jumlah':Tistam1[i],
'satuan':'Pcs',
"harga_barang':1istHargaBrg[i],
"harga_jual':1istHargalualli],

i+=1
i=10
while i < 1000:
dataBarang = []
while j<5:
dataBarang.append({

"kode_barang":1istkodeBrg[index],

"nama_barang":11stNamaBrg[index],
"jumlah":1,

"harga_jual":TistHargaJual[index],
19

J+=1

docTrx.add({

'data_user':[
TistNama[iduser],
TistAlamat[iduser],
TistNoHp[iduser],
Tistemail[iduser],],

'data_barang':dataBarang,

'tanEga'I ':tanggalstr,

"diskon’:0,

H "total_harga': TlistTotalHargal[i]

Indonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 3
"id_detail_transaksi™ : #read data
wdDetaﬂTr‘ansakm ['j(doc_trxData = docTrx.stream()
_transa "ridTransaksi[i], for doc in doc_trxpata:
'|dJ:-ar'ang "|dBar'ang [31, print(f'{doc.id} =>
"Jjumlah':1, {doc.to_dict()}')
'harga_jual':1istHargajual[]j] #delete data
b doc userbata = docUser.where('nama',
#proses read data '==", "Bella').get()
doc_trxpata = docTrx.stream() for doc in doc_userData:
for doc in doc_trxData: key = doc.id
doc_user = docUser.where('id_user', '==", docUser.document (key).delete()
doc.to_dict() ["id_user']).stream() doc_trxpata =
'For' datauser in doc_user: docTrx.where('data_user',
rint(f'{ datavser.id} => { "array_contains', 'Bella').get()
datauser to_dict()}") for docTrx in doc_trxData:
doc_det_trx = keyTrx = docTrx.id
docDetTrx.where('id_transaksi', '==' docTrx.document (keyTrx).delete()

doc.to_dict(Q['id_transaksi']). stream()
for docDet in doc_det_trx:
doc_barang =
docBarang.where 1d_harang '=='
docpet . to_dict()['id_barang']). Stream()
for dncBrg in doc_barang:
print(f {docBrg.id} =
{docBrg.to d1ct()} h]
print(f'{docDet.id} =>
{docpet.to_dict()1}")
print(f'{doc.id} =+ {doc.to_dict()1}")
#proses delete data
doc_user = docUser.where('nama', '"=='",
‘Bella’) .stream()
for doc in doc_user:
key = doc.id
docuser .document(key) .delete()
doc_trx = docTrx.where('id_user',
="' doc.to_dict()[‘id_user’']).stream()
for dataTrx in doc_trx:
doc_det_trx =
docDetTrx.where('id_transaksi', '=="
wnEgdataTrx Lto_dictQQ['id transaks1])) stre
am

for dataDetTrx in doc_det_trx:
keyDetTrx = dataDetTrx.id
docDetTrx.document(keyDetTrx
) .delete()
keyTrx = dataTrx.id
docTrx.document(keyTrx) .delete()

3. RESULTS AND DISCUSSION

The test and analysis results on the relational database model and the low-cost version of the database
describe as follows.
3.1 Test Results on the Relational Database Model

The write data process is carried out by inputting user data, item data, favorite data, transaction data,
and transaction detail data. The request used for the write data process is 6030 requests. The use of storage
space to accommodate all the data is 0.0011GB. The read data process is carried out by reading/retrieving
transaction data along with user and item information. The request used is 12000 request read. Finally, the
delete process is carried out by deleting user data along with transactions and transaction details. The request
used is 601 request read and 601 request delete.

Table 6. Test results on the normalized database model

Testing Result
Storage Usage 0.0011GB
Write Data 6030 request write
Read Data 12000 request read
Delete Data 601 request read & 601 request delere

32 Test Results on the Low-Cost Version of the Database Model
The write data process is carried out by inputting user data, item data, and transaction data. The request

used is 1020 request write. The use of storage space to accommodate all the data 1s 0.00058GB. The read data
process is carried out by reading/retrieving transaction data along with user and item information. The request
used is 1000 requests. The delete process is carried out by deleting user data along with transactions and
transaction details. The rcqucsl.used is 101 request read and 101 request delete.

5

Paper’s should be the fewest possible that accurately describe ... (First Author)

4 m) ISSN: 2502-4752

Table 7. Test results on the low-cost version of the database model

Testing Result
Storage Usage 0.00058GB
Write Data 1020 request write
Read Data 1000 request read
Delete Data 101 reguest read & 101 reguest defete

3.3 Test Result Analysis

The test results show that the use of storage, write processes, read processes, and delete processes in
the low-cost version of the database model is smaller than the relational database model. The percentage value
of comparison obtained in storage savings of 47.27%, write process of 83.08%, read process of 91.26%, and
delete process of 83.19% compared to the relational database model. The percentages generated in Table 8
show that the low-cost version of the database with the Cloud Firestore implementation provides the
advantage/savings compared to the relational database. The comparison results from testing the relational and
the low-cost version of the database model if it is represented by a chart for both storage and process usage can
see in Figure 4. The percentage value generated from the test results obtains using Formula 1.

P=(NVH —NN) <+ NN x 100% (1)

The variables description in Formula 1 is as follows. NP is the percentage value wanted to find, and NVH is
the value obtained from the test results on the low-cost version of the database model. Besides, NN is the value
obtained from the test results on the relational database model.

Table 8. Results comparison
Model Database

Testing Normalized Version Low-Cost Version Percentage

Storage Usage 0.0011GB 000058GB 4727%

Write Data 6030 request write 1020 request write B308%

Read Data 12000 request read 1000 request read 9126%

Delete Data 601 request read & 601 request delere 101 requc.u. read & 101 83.19%

request delete
Storage Usage Process Usage
0.0012 14000
0.001 12000
0.0008 10000
0.0006 3000
0.0004 5000
0.0002 4000
0
Relational Datab Low-Cost Versio 2000
elational Database w-Cost Version
o 0 I .
Database
Relational Database Low-Cost Version
M Storage Usage Database
W \Write M Read Delete
(a) (b)

Figure 3. Comparison chart of test results (a) Storage usage comparison (b) Process usage comparison

4. CONCLUSION

The process of redesigning the database to produce a low-cost version of the database model was
obtained from breaking the relational database into SQLite and NoSQL databases, followed by a
denormalization process. An optimization process will be carried out in the NoSQL database by changing the
table structure and data type to become a low-cost version of the NoSQL database. The purpose of making this
1
Edonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

2 m) ISSN: 2502-4752

database model is to save the cost of storing and processing data transactions (write, read and delete) on Cloud
Firestore. The database model test was camried out with 6030 data consisting of 10 item data, 10 user data, 10
favorite data, 1000 transaction data, and 5000 transaction detail data. The test results obtained from the low-
cost version of the database model were the storage usage of 0.00058GB, the write process usage of 1020
requests, the read process usage of 1101 requests, and the delete process usage of 101 requests. In addition,
savings in storage usage of 47.27%, the write process usage of 83.08%, the read process usage of 91.26%, and
the delete process usage of 83.19% compared to the test results of the relational database model. Furthermore,
it is necessary to test database stress with various transactions both in terms of query variations, volume and
user redundancy so that a critical point is obtained related to key matters in the application of design in non
relational databases.

REFERENCES

[t A_ A G. Singh, E. 1. Leavline, and 1. Selvam, “Mobile Application for m-Learning,” Int. J. Adv. Res. Comput. Sei., vol. 8, no.
3, pp. 313-317,2017.

2] R. Cahya, [. Made, and A. A *Data Exchange Service using Google Drive APL” Int. J. Comput. Appl.. vol. 154, no. 7. pp.
12-16, 2016, doi: 10.5120/ijca2016912187.

[31 G. H. Surya, 1. Made Sukarsa, and [. Gusti Made Arya Sasmita, “Two-ways database synchronization in homogenous database
management system with binary log approach,” J. Theor. Appl. Inf. Technol..vol. 65, no. 1, pp. 76-82,2014.

[4] R. Gudakesa, I. Made Sukarsa, and I. Gusti Made Arya Sasmita, “Two-ways database synchronization in homogeneous
DBMS using audit log approach,”™ J. Theor. Appl. Inf. Technel., vol. 65, no. 3, pp. 854-859, 2014,

5] M. A. Belfedhal and M. Malki, “MASHUP of Linked Data and Web APL” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 6, pp.
64-71, 2018, doi: 10.5815/ijites.2018.06.07

[6] C. Louw and C. Nieuwenhuizen, “Digitalization strategies for SMEs: A cost vs. skill approach for website development,”
African J. Sei. Technol. nnov. Dev.,vol. 12, no. 2, pp. 195202, 2020, doi: 10.1080/20421338.2019.1625591

[71 AL Agocs and J-M. Le Goff, A web service based on RESTful API and JSON Schema/JSON Meta Schema to Construct
Knowledge Graphs,” 201 8 Int. Conf. Comput. inf. Telecommun. Syst.. pp. 1-5. 201 8.

8] A. Soni and V. Ranga, “API features individualizing of web services: REST and SOAP.” Int. J. Innov. Technol. Explor. Eng..
vol. 8, no. 9 Special Issue, pp. 664-671, 2019, doi: 10.35940/ijitee L1 107.0789519.

9] A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y. G. Gueheneuc, and E. Beaudry, *“An observational study on the state of

REST APl uses in android mobile applications,” Proc. - 2019 IEEE/ACM 6ih Int. Conf. Mob. Softw. Eng. Syst. MOBILES oft
2019, pp. 6675, 2019, doi: 10.1109/MOBILESoft.2019.00020.

[10] D. Rathod, “Performance Evaluation of Restful Web Services and Soap / Wsdl Web Services,” Inr. J. Adv. Res. Comput. Sei..,
vol. 8, no. 7, pp. 415-420, 2017, doi: 10 26483 /ijarcs vBi7.4349.

[t1] A. Dudhe and 8. 8. Sherekar, “Performance Analysis of SOAP and RESTful Mobile Web Services in Cloud Environment,”
Int. J. Comput. Appl., pp. 975-8887,2014

[12] I Made Sukarsa. I Nyoman Piarsa, and [Gede Bagus Premana Putra, “Application of MVP Architecture in Developing
Android-Based Seminar Ticket Booking Applications,” /. RESTI { Rekavasa Sist. dan Teknol. Informasi). vol. 4. no. 3, pp.
513-520, 2020, doi: 10.29207/resti.v4i3 1396,

[13] T. Aziz, E. Haq, and D. Muhammad, *“Performance based Comparison between RDBMS and OODBMS.” Int. J. Conmput
Appl.vol. 180, no. 17, pp. 4246, 2018, doi: 10.5120/ijca2018916410.

[14] S. Palanisamy and P. Suvithavani, “A survey on RDBMS and NoSQL Databases MySQL vs MongoDB,” 2020 [nt. Conf.
Comput. Commun. Informatics, ICCCI 2020, 2020, doi: 10.1109/CCCL48352 2020.9104047.

[15] S. Venkatraman, K. F. 8. Kaspi, and R. Venkatraman, “SQL Versus NoSQL Movement with Big Data Analytics,” Int. J. Inf.
Technol. Compui. Sci.,vol. 8. no. 12, pp. 539-66, 2016, doi: 10.5815/ijitcs.2016.12.07

[16] S. Singh, “Security Analysis of MongoDB,” Int. J. Digit. Soc.. vol. 10, no. 4, pp. 1356-1561, 2019, doi:
10.20533/ijds.2040.2570.2019.0193

[17] G. Kaur and J. Kaur, “In-Memory Data processing using Redis Database,” Inr. J. Compur. Appl.. vol. 180, no. 25, pp. 26-31.
2018, doi: 10.5120/ijca20 18916589,

[18] M. Potey, M. Digrase, G. Deshmukh, and M. Nerkar, “Database Migration from Structured Database to non- Structured
Database,” Int. J. Comput. Appl.. no. lertaet, pp. 975-8887, 2015

[19] [. M. Sukarsa, I. K. G. D. Putra, N. P. Sastra, and L. Jasa, “A new framework for information system development on instant
messaging for low cost solution,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 6, pp. 2799-2808,
2018, doi: 1012928/ TELKOMNIKA v 16i6.8614

[20] F. M. Dahunsi, A. I Joseph, O. A. Samami, and O. O. Obe, *Database management system for mobile crowdsourcing
applications,” Miger. J. Technol., vol. 40, no. 4, pp. 713-727, 2021, doi: 10.4314/njt.v40i4.18.
[21] R. B. Sabari Mathavan, V. Rohitram, C. Ashhwath, and P. Sasikumar, *Drowsiness Detection and Rest Stop Suggestion,” J.

Phys. Conf. Ser.,vol. 2115, no. 1, p. 012028, 2021, doi: 10.1088/1742-6596/2115/1/012028.

[22] M. Srivastava. V. Yadav, 5. Singh, T. G. Noeida, and U. Pradesh, “Implementation of Web Application for Disease Prediction
Using AL" BOHR Int. J. Data Min. Big Data,vol. 1, no. 1, pp. 5-9,2020.

[23] R. A. Mohamad Razid, A. F. Ibrahim, M. N. F. Jamaluddin, and R. A. JM Gining, “My-Wakaf: A Waqf of Propery
Management Application,” J. Comput. Res. Innov.,vol. 6, no. 2, pp. 128141, 2021, doi: 10.24191/jerinn.v6i2 213,

[24] “Cloud Firestore | Firebase Documentation.”™ .

[25] D. Bibicu, L. Moraru, and S. Moldovanu, “Local or External Databases in Android Programming. A Practical Comparative
Study.” Ann. Dunarea Jos Univ. Fascicle | Econ. Appl. Informatics, vol. 24, no. |, pp. 28-32, 2018,

[26] H.J.Kim. E. J. Ko, Y. H. Jeon, and K. H. Lee. “Migration from RDBMS to Column-Oriented NoSQL: Lessons Learned and
Open Problems,” Lecr. Notes Elecir. Eng., vol. 461, pp. 25-33, 2018, doi: 10.1007/978-981-10-6520-0_3.

27 H.J.Kim, E.J. Ko, Y.H.Jeon, and K. H. Lee, “Techniques and guidelines for effective migration from RDBMS to NoSQL,”
J. Supercompui., vol. 76, no. 10, pp. 7936-7950, 2020, doi: 10.1007/s11227018-2361-2.

[28] M. S, VIGHIO, T. . KHANZADA, and M. KUMAR, “A Tool for Query Nomalization and Elimination of Redundancy,”
SINDH Univ. Res. J. (SCIENCE Ser., vol. 50, pp. 143-147,2018

[29] K. Kumar and 8. Kumar, “Relational Database Design: A Review,” Int. J. Comput. Appl.. vol. 176, no. 6, pp. 14-18, 2017,

Indonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

3Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 m)

[30]
[31]
132]
[33]
[34]
[35]
[36]

[37]

doi: 10.5120/ijca2017915626.

S. T. Bhosale, T. Patil, and P. Patil, *SQLite: Light Database System.,” fnt. J. Comput. Sci. Mob. Compur., vol. 44, no. 4, pp.
882-885,2015

Y. Wang, Y. Shen, C. Su, 1. Ma, L. Liu, and X. Dong, “CryptSQLite: SQLite with High Data Security,” IEEE Trans. Comput.,
vol. 69, no. 5, pp. 666678, 2020, doi: 10.1 109/TC 2019.2963303.

B. Smitha and K. Shirisha, “Implementation of Business Register Record Application on Android Platform,” Int. J. Compur
Appl.vol. 156, no. 7, pp. 21-26, 2016, doi: 10.5120/ijca2016912464

N. Kojic and D. Milicev, “Equilibrium of redundancy in relational model for optimized data retrieval.” IEEE Trans. Knowl.
Data Eng..vol. 32.n0.9,pp. 1707-1721, 2020, doi: 10.1 [09/TKDE.2019.291 1580.

S. Amghar, S. Cherdal, and 5. Mouline, “Storing, preprocessing and analyzing tweets: finding the suitable noSQL system,”
Int. J. Compur. Appl., 2020, doi: 10.1080/12062 12X.2020. 1846946,

1. Blank and K. Deb, “Pymoo: Multi-Objective Optimization in Python,” IEEE Access, vol. 8, pp. 89497-89509, 2020, doi:
10.1 109/ACCESS. 2020.2990567 .

A Javed, M. Zaman, M. M. Uddin, and T. Nusrat, “An analysis on python programming language demand and its recent trend
in bangladesh,” ACM Int. Conf. Proceeding Ser., pp. 458465, 2019, doi: 10.1 145/3373509 3373540,

S. K. R., “Python -The Fastest Growing Programming Language.” Int. Res. J. Eng. Technol.,vol. 4, no. 12, pp. 354357,
2017, [Online]. Available: www irjet.net

BIOGRAPHIES OF AUTHORS

I Made Sukarsa, obtained his Doctoral Degree in Udayana University in 2019. He currently
works as a lecturer in the Department of Information Technology University of Udayana. His
research interests are Natural Language Processing, Integration System, Data Warehouse,
Middleware, and Information Technology Governance. Until now, He has written several
studies in dozens of international journals indexed scopus.

I Kadek Ari Melinia Antara, he obtained his Bachelor Degree in Departement of
Information Technology at Udayana University, Bali, Indonesia. He has the ability as a web
developer, mobile application developer and data management. His research interests are
Industry Application

Putu Wira Buana, he obtained his Master Degree in The Science of Applied Electronics at
Brawijaya University in 2007. He currently works as a lecturer in the Department of
Information Technology University of Udayana. His research interests are Emerging
Technology, And Industry Application. Until now, He has written several studies in dozens
of international journals indexed scopus.

I Putu Agung Bayupati, received the Bachelor of Engineering degree in Electrical
Engineering from Udayana University, and Master of Engineering degree in Information
Technology from Bandung Institute of Technology and Ph.D degree in Electrical Engineering
and Computer Science from Kanazawa University in 2001, 2006 and 2012 respectively. He
joined to Udayana University in 2003 as a lecturer. His research interest are in intelegent
signal processsing, computer vision and Business analytics.

Ni Wayan Wisswani, she obtained her Master Degree in Fac. of Electrical Engineering at
Udayana University. She currently works as a lecturer in the Department of Informatics
Management of Bali

Paper’s should be the fewest possible that accurately describe ... (First Author)

4 m} ISSN: 2502-4752

Dina Wahyuni Puteri, she graduated from SMAN | Melaya in 2018, She is currently in the
process of studies at the Department of Information Technology, Udayana University for
Bachelors Degree. During in college, she actively participates in student organization, both
within in study program, faculty, and university.

Indonesian J Elec Eng & Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x

data storage

ORIGINALITY REPORT

/s

SIMILARI

6% Ao, Sy

TY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY S

OURCES

.

Submitted to Universiti Teknologi Malaysia
Student Paper

2%

o

WWW.coursehero.com

Internet Source

T

e

zenodo.org

Internet Source

T

-~

Submitted to University of Basrah - College of

Science
Student Paper

T

o

Submitted to Graduate School,

Mahasarakham University
Student Paper

<1%

"Digital Libraries for Open Knowledge",
Springer Science and Business Media LLC,
2018

Publication

<1%

Submitted to Blackpool and The Fylde College,

Lancashire
Student Paper

<1%

Submitted to Universiti Teknologi MARA

Student Paper

E <1 %
hilpapers.or

n IEterneptSoErce g <1 %
Submitted to President Universit

Student Paper y <1 %
ljeecs.iaescore.com

IrJWternetSource <1 %
www.scribd.com

Internet Source <1 %

Amjed Shatnawi, Hana Mahmood Alkassar, <1 o
Nadia Moneem Al-Abdaly, Emadaldeen A. Al- ’
Hamdany et al. "Shear Strength Prediction of
Slender Steel Fiber Reinforced Concrete
Beams Using a Gradient Boosting Regression
Tree Method", Buildings, 2022
Publication
journals.garmian.edu.krd

JInternetSourceg <1 %
koreascience.or.kr

Internet Source <1 %

Exclude quotes On Exclude matches Off

Exclude bibliography On

