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ABSTRACT

This paper presents a nlEperical and experimental study of increasing the performancefBoefficient
(COP) of split AC (SAC) by reducing compressor work and increasing cooling capacity. Two phase
ejector as an expansion device with a new design of dual evaporator temperature used. numerical
methods apply the mathematical model developed in the EES software that is applied.
Thermodynamic analysis is carried out to achieve ASHRAE Standard requirements for a minimum
SAC with COP application of 3.5. The SAC system is filled with R-290 as a thermal fluid medium.
Based on the simulation results a numerical model of the ejector is then produced and installed in a
modified SAC system of cooling capacity of at least 9000 BTU/hour. An experimental test was
conducted to investigate the actual performance of the ejector and its effect on the performance of the
SAC system. The results showed that the two phase ejector with the new design of the dual
evaporator temperature system was successful. When compared to standard split air conditioners
using capillary§Bbe expansion devices the tested ejector system contributes around 35§8bf power
savings. The COP of the system can reach 5.5 which accounts for 39% of the increase in
performance. Use of the constant ejector area COS-SAC dual temperature evaporator system which
is intended to be applied for split AC to replace accumulator in standard ejector system has been
successful.

Keywords: Two-phase ejector; expansion device; air conditioners; coefficient of performance.
1. INTRODUCTION

Air conditioners (AC) are generally used to make air in a room achieve temperature and humidity
corresponding to the required level of human comfort. AC systems also provide air circulation
throughout the room, air cleanliness and fresh air. The use of AC systems becomes very popular
especially in tropical countries such as Indonesia. Currently the use of AC systems is increasingly
widespread not only for office buildings and hotels but also for household. Accordingly, electrical
energy consumption of AC systems for home and commercial needs has increased significantly. It
has been reported that the proportion of electrical energy use by AC systems in hotels could reach
65% of total energy use. This requires attention infe effort to apply energy conservation program in
hotel industries especially for electrical energy [1]. Modern air-conditioners incorporate variable-speed
compressors and variable-opening expansion valves as the actuators for improving cooling
performance and energy efficiency [2-4].

Split air conditioning systems are well known to use vapor compression cycle technology with
capillary tube as their expansion devices. Existing concepts about the expansion devices (capillary
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tube, thermostatic/electronic expansion valve (TXV/EXV), orifices) of refrffferation systems are
functioned for regulating mass flow of the refrigerant as well as reducing the pressure from the
condenser pressure to the evaporator pressur@@which occurs at constant enthalpy (an isenthalpic
process). One thermodynamic disadvantage of the vapor compression cycle is its isenthalpic
expansioffiprocess that occurs in the expansion device. Isenthalpic process can reduce cooling
capacity in the evaporator due to energy losses at the throttling process in the expansion device.
Compared with the Carnot cycle which has an isentropic expansion process, the Coefficient of
Performance for subsequent abbreviation (COP) of the vapor compression cycle is decreased. This
occurs as a result of a decrease in capacity and the loss of recovery of expansion work. Capillary tube
are also known to have weaknesses due to friction of the refrigerant flow along the pipe wall as well
as changes in velocity along the capillary pipe which cause considerable energy loss.

To overcome such energy losses isentropic process required. Ejectors can be used to generate
constant entropy in the throttling process. Some researchers who have tried the appropriate ejector
device on the cooling system also stated an increase in COP from the system such as: Single-phase
ejectors in modified systems utilized for air conditioning and heat pumping applications resulting in 7%
COP improvement up to 9% [5]. The concept of using a two-phase ejector to reduce losses due to the
throttling process in the cooling system was first offered [6]. In addition, the two-phase flow ejector
has no moving parts, low cost, simple construction and low maintenance requirements that make it a
promising system modification [7,8]. Furthermore, the subject of research into applied research that is
currently popular among researchers is by replacing the expansion valve of the capillary pipe with
ejector device. Kornhauser [9] in different studies using ejector expansion as an expansion device in
the cooling system and by using R-12 refrigerant, R-134a concluded the same by comparing them to
conventional vapor compression refrigeration systems it was reported that there was an increase in
COP values ranging from 3.8% to 21%.

Chunnanond and Aphornratana [10] called a refrigeration system that used tff§-phase flow ejector to
be its expansion tool as Ejector Expansion Refrigeration System (EERS). The use of a two-phase flow
ejector instead of the conventional expansion device is one of the efficient techniques to improve the
system performance not only by recover the expansion process loss by generating isentropic
expansion process but also by increase the system cooling capacity and decrease compressor power
[11]. Based on position of motive nozzle, the two-phase flow, ejectors can be categorized into two
Elpes namely: constant pressure ejector and constant area ejector [12]. The ejector grouped into a
constant-pressure ejector is an ejector with a motive nozzle whose exit plane located in the suction
nozzle before to its constant area. Whereas the ejector with outlet field of the motive nozzle EJit plane
within a constant area ejector was categorized as a constant area projection [13-15]. At the same
operating temperature using a constant area ejector COP and its EER is higher than of the system
using a constant pressure ejector as reported in [16]. Bilir and Ersoy [17] also reported theoretical
studies using R134a. In off-design conditions, the system showed higher COP values than
conventional systems and by using COP constant area ejector could be increased by 22.3%
depending on operatin.g conditions.
3

Various studies on numerical analysis and experimental results showed that using a two-phase
ejector as an expansion device allowed for the improvement of COP in the steam compression
cooling cycle. Thermodynamic analysis showed that COP improvement was above 20%, but no
experimental method resulted in an increase of mor@jthan 10% [18]. This resulted in improved
systems and effects of geometric ejector dimensions, suh as the throat of the motive nozzle, the
suction chamber, the constant area and the diffuser being an int@llesting research topic by the majority
of researchers. The nozzle wi designed according standard based on recommendations from the
ASHRAE Handbook including the other dimensions, lengths of each section and the convergent and
divergent angles [19]BAccording to the experimental results as reported in [20], the improvement of
COP when using a two-phase ejector as an expansion device on the bus AC system was 8%.
Thermodynamic simulation model in [21] stated that if the inefficiency that occurred about 15% of the
liquid and vapor mass did not exit properly on the respective ports would decrease the COP of the
standard two phase ejector cycle. It was also noted that the ejector cycle with Condenser Outlet Split
(COS) ejector cycle could achieve a COP improvement above 10% compared to conventional cycles.
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Ejector Cycle adds the throttle variable that is set the degree of exposure by the superheat
temperature of the refrigerant at the evaporator output or the refrigerant entering the evaporator. The
goal is to improve the efficiency nozzle and improve the range of larger load variations. Nevertheless,
the above inventions still have disadvantages and limitatons which include the use of fluid
accumulator and gas separator where inefficiency occurs especially in the introduction of refrigerant
into the compressor so that the liquid refrigerant may enter compressor. This can damage the
compressor and the system cannot run properly. A large size accumulator complicates the design if it
is used on a split AC system.

This study focuses on liquid and gas refrigerant separator accumulator, using a secondary evaporator
to replace accumulator. Separation of the refrigerant flow out from the main liquid refrigerant line of
the condenser is directed towards the ejector and the ejector exit is connected into the primary
evaporator and then refrigerant gas out evaporator is connected to the compressor. The secondary
flow of refrigerant is through a capillary tube and then enters a secondary evaporator. From the
secondary [#aporator, refrigerant gas flows into ejector as a secondary flow. So that there is
refrigerant mixing between primary and secondary flows in ejector and simultaneously increases the
refrigerant pressure that enters the compressor. This paper presents constant area ejector applied in
a split air conditioner with a secondary evaporator to replace accumulator. Results of experimental
tests at Indonesian environmental temperature conditions are also presented. Moreover, the ejector's
internal efficiency has numerically been predicted to ensure the system can work with appropriate
efficiency.

2. EJECTOR REFRIGERATION SYSTEM FOR AIR CONDITIONER

A schematic illustration of the ejector COS-SAC (Condenser Outlet Split - Split Air Conditioner)
system and the corresponding p-h diagram is shown in Fig. 1a and 1b. The main components of this
system are almost the same as conventional compression system. The system comprises
compressor, condenser, expansion device, and evaporator. The system also incorporates a two-
phase flow ejector with an additional evaporator. These two additional components are inserted to
recover the expansion process losses and to increase the compressor suction pressure.

p

-
@ T.RH, v out uda%]
' e D P T (Pressurely
- e &
- ~ lgP
flow meter q ) D
P T

[m— )
l Kondensor
@ T.RH, v inudara —
© D | il ™S
ﬁ Filter " g 3 /
Kompressor

@ T.RH,vinudara i

\ Y Evap.l

4

b {erthalav)

Evap.2 S\. T.RH, v out udara

a. Schematic diagram b. Pressure-enthalpy
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From Fig. 1 can be seen that saturated vapor exits from primary evaporator (point 1) is sucked and
compressed to a high pressure and temperature using the compressor. Then, the superheated vapor
discharges from the compressor (point 2) is condensed by transfer its heat to the surrounding in the
condenser (Qc). The high pressure saturated liquid exits from condenser (point 3) and then separated
into two liquid flows: first flow - primary flow liquid expanded through ejector (point 3-7); second flow -
the liquid expanded in the expansion device (point 3-4). The primary flofffassed through ejector
under high pressure and expands through the converging-diverging nozzle. Mixing of the primary and
secondary flows takes place in the constant area ejector (state 5) and a liquid and vapor mixture at an
intermediate pressure leaves the diffuser (point 68) of the ejector to the primary evaporator inlet,
whereas the vapor circulates back through compressor [{Eint 1-2). The refrigerant after expanded in
the expansion device (point 4), goes into the secondary evaporator, and finally enters the ejector as a
secondary flow.
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Fig. 2. Constant-area mixing ejector with its pressure and velocity profiles

Operating principle of a constant-area ejector is [{[strated in Fig. 2. It consists mainly of two
conversion diversion nozzles. Fig. 2 also illustrafiffj pressure and velocity distributions along the axis
of the ejector. The high pressure primary flow (state point 3) is expanded in the motive nozzle to a
back pressure which is lower than the evaporator pressure (state point 4). Hence, the secondary flow
is entrained and expanded through the secondary nozzle to a pressure at state point 8 and then both
refrigerant gases are mixed together in the beginning of the constant area section and the mixed
pressure (state point 5) is assumed to be higher than the back pressure. A shock wave takes place in
the constant-area section and the pressure increases while the fluid velocity decreases. In the
diffuser, the pressure increases and the fluid becomegBhixture (state point 6) at pressure of the outlet
of ejector (ejector back pressure). This pressure is an intermediate pressure between the primary and
secondary gas pressures. Technical drawing of the ejector used in this study is developed from [20].

3. METHODS

This study used an experimental method, a direct observation on the AC split test ejector system
carried out at ambient temperature which was kept constant at a temperaffi@ of 28°C + 0.5°C. The
ejector is designed and self-made (Fig. 2). Thermodynamic analysis and COP of the ejector COS-
SAC system are processed and calculated using EES program. The COS-SAC system with two
evaporator temperatures can be seen in Fig. 1.
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3.1 Thermodynamic Analysis

The thermodynamic analysis is carried out based on mass, energy and momentum conservation
equations. The following assumptions are made in the system analysis: Steady state one-dimensional
flow; Condensation, evaporation, sub-cooling and superheating temperatures are known, Isentropic
efficiencies of the nozzle and diffuser are known; Efficiency of the mixing section is known; The
process in the mixing section takes place at constant pressure and constant cross-sectional area; [fhe
throttling process in expansion valve is isenthalpic; Pressure losses in the system are neglected. The
ejector plays an important role in the COS-SAC as it recovers the expansion process losses and
increases the compressor suction pressure. Three ejector parameters such as, entrainment ratio
(secondary mass flow to primary mass flow), pressure lift ratio (diffuser exit pressure to secondary
nozzle inlet pressure) and geometric area ratio (mixing chamber area to primary nozzle exit area)
significantly inflfhce the system performance with an optimum ratio. Based on the above
assumptions, in the next section, the conservation equations of mass, energy and momentum are
successively applied to each element of the primary, secondary and mixed fluids developed to
determine its COS-SAC performance characteristics. The EES program uses to be calculated and
simulated and compared with the experiment data was collected by data acquisition. The refrigerant
enters the compressor at the point (1) as superheated vapor, and gets out from point (2). Then, the
refrigerant enters into the condenser. All the thermodynamic properties at the compressor inlet can be
determined if the primary evaporator and superheating temperatures are known. In order to calculate
the thermodynamic properties at the compressor exit, compressor isentropic efficiency can be used.
[22]. Compressar isentropic efficiency is expressed as follows:

it 1)

nmm.,ss =

An empirical expression given in Eq. (2) is obtained for the isentropic efficiency of compressor by
using experimental results given in [23,24].
Neomis = 0.874 - (0.0135) Pi (2)

Pi = the compressor pressure ratio and hzs is determined by using Eq. (3) and (4):

_ P
Pi= ; )
hzs = F (Szs,Pas ) (4)

13

Here, sz is equal to s1. The ghalpy of the refrigerant at the compressor exit can be calculated from
Eq. (1) by using the compressor isentropic efficiency given in Eq. (2). Since the condenser and sub-
cooling temperatures are known, thermodynamic properties at the condenser exit are calculated As it
is known, an ejector comprises three main sections that are nozzle, mixing, and diffusor. Schematic
view of the ejector is given in Fig. 5. Point (3), point (4), point (5) and point (6) indicate nozzle inlet,
mixing section inlet, diffuser inlet, and diffuser exit, respectively. Thermodynamic properties at the
nozzle exit can be calculated by using the energy equation between points (3) and (4) given in Eq. (5)
and nozzle isentropic efficiency given in Eq. (6). Due to conservation of mass principle, it should be
considered that m3=m4 and velocity of the refrigerant at the nozzle inlet is neglected in Eq. (5).

shz= raha + ﬁ"lx;JT; (5)
h,—h

o= =t ©®
h,—h,,
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Thermodynamic properties at the diffuser inlet can be calculated by using energy equation in Eq. (7)
and mixing section efficiency in Eq. (8) as follows:

(ha= 22+ 0 (he=2)= (1+w) (hs - ) 7)
(l+a})%

r|rr| =ﬁ (8)
Vi o
2 2

Mixing efficiency denotes the frictional losses in the mixing section. w is the entrainment ratio, which
expresses the ratio of mass flow rates of primary and secondary fluids that enter the ejector, has been
defined by Eq. (9).

w="" ©)

mi&

5
For the determination of thermodynamic properties of the refrigerant at the diffuser exit, energy
equation and diffuser isentropic efficiency can be used as given in Eq. (10) and Eq. (11), respectively.
The minimum refrigerant velocity for the oil return was recommended as 5-7 m s in the com#ssor
suction line [25]. There is an evaporator between the compressor and diffuser outlet of the
investigated two-phase ejector cooling system in this study. So, velocity of the refrigerant at the
diffuser outlet is considered as vs = 15 m s™' for the sake of safe ail return.

2
Vg

T

Vv

(hs= == ) =(hs+ =) (10)

5

%e refrigerant enters the expansion valve at the point (3) and gets out from point (7). Since
expansion process in the expansion valve is constant enthalpy process, the enthalpy at the point (7)
will be equal to the enthalpy at the point (3). Primary mass flow rate rms =rhacan be calculated from the
cooling capacity of the system which is given in Eq. (12):

Q =rma[w (he—=h7)+ (1+w)(h1 = hs)] (12)
The work of compressor can be calculated by the equation given below:

W = rhg (1 + w)(hz — h1) (13)
and the coefficient of performance of the system is :

oh, —h)+(1+wm)(h —h,)

(1+w)(h, —h)
COP of the two-phase ejector refrigeration system given in Eq. (14) is compared to the COP of the
conventional air conditioning system (COPsw), and the COP increase rate (COP*) is determined as
follows:

COP = (14)
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COP—-COP,, o
COP (19)

std

COP* =

The coefficient of performance of the conventional refrigeration system can be calculated by the
following equation:

COPyy= o= /n (16)
h, — h,

3.2 Experimental Set up

An experimental ejector COS-SAC test system was established. The test system assembly
incorporated a two-phase ejector @hd dual evaporator-temperature according to the schematic
presented in Fig. 1. The tests were carried out in two stages. The first stage, the system was charge
with refrigerant R-22 and the second stage, refrigerant R290 was used. Data of test parameters
included pressure, temperature were recorded with data logging system consisted DataScan 7200
modules, K type thermocouples and pressure transducers as well as a monitoring display system.
Power consumption was recorded with the power analyzer. Two refrigerant micro flow meters at the
main flow (at condenser outlet side) and primary flow at the ejector inlet were installed to measure
mass flow rate of the refrigerant in the system and refrigerant flow ratio (w). The test was carried out
for 18 hours with 10 repetitions to observe the hysteresis and uncertainty in the measurement.

4. RESULTS AND DISCUSSION
4.1 Evaporation Temperature

Fig. 3a shows variation of evaporator temperature 1 tested at ambient temperature 28°C with two
types of refrigerants. The average temperatures of the refrigerant out primary evaporator for R-22 and
R-290 are 19.5°C and 18.0°C respectively. Pressures of the primary evaporator side are respectively
110 Psig and 84 Psig for R-22 and R-290. From the data can be estimated saturation temperature of
the evaporator are 18°C (for R-22) and 13°C (for R-290) which provide super heat degree of the
system 2 K and 5 K respectively for the system running with R-22 and R-290.
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Fig. 3. Dual evaporator temperatures in the ejector COS-SAC system
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Variation of evaporator temperature-2 tested at ambient temperature 28°C can be seen inffEh. 3b.
Average refrigerant temperature out of secondary evaporator for R-22 and R-290 are 20.3°C and
19.3°C respectively. Pressures of the secondary evaporator are respectively 107 Psig and 80 Psig for
R-22 and R-290. While saturation temperature of the secondary evaporator are 17°C for R-22 and
11°C for R-290 which provide degree of super heat 3 K and 7.3 K respectively for the system running
with R-22 and R-290. This indicates that refrigerant entering the ejector is in superheat conditions.

4.2 Condensation Temperature

Temperatures of refrigerant entering and leaving the condenser are presented in Fig. 4a and 4b
respectively. Average refrigerant temperatures at inlet of the condenser are 53.1°C and 52.7°C
respectively for system charged with R-22 and R-290. At the outlet side of the condenser, average
refrigerant temperatures for system with R-22 and R-290 were 30.8°C and 29.6°C. Pressures at the
high side of the system are 177 Psig for system with R-22 and 150 Psig for system with R-290. Based
on high side pressures obtained from measurement, saturation temperatures in condenser can be
estimated which are 34°C and 32°C respectively for system when was charged with R-22 and R-290.
The tested system was found to work with degree of sub-cooling of about 3.3 K (for system with R-ER)
and 2.5 K (for system with R-290). This provides indication that refrigerant entering the ejector (the
primary flow) and capillary tube (the secondary flow) is indeed in liquid phase. The test results also
ensure that the ejector has worked with two phase refrigerant as discussed in published articles
especially for split air conditioning applications.
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Fig. 4. Condenser inlet and outlet temperatures

4.3 Ejector Internal Efficiency and System Power Consumption

The internal efficiency of the ejector is shown in Fig. 5. The ejector that has a good pressure increase
and a good refrigerant velocity dfEJ at the diffuser outlet can provide a good effect on the primary
evaporator. It can also increase refrigerant pressure at the suction side of the compressor. As the
result the work of the compressor decreases. The ejector internal efficiency obtained from the test
such as nozzle efficiency is 0.30 for the system charged with R-22 and 0.23 for the system charged
with R-290. Mixing section efficiency for both systems is 1.36. However, due to small efficiency of the
diffuser, the diffuser of the ejector can be considered failed with regards to the effort to increase the
pressure and decrease the speed of the refrigerant from the mixing section area. This affects the work
of the compressor. It can be seen from the power needed by the compressor for R-290 to be greater
than the average power required in the system with R-22 as can be seen in Fig. 6.
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Fig. 5. Ejector efficiency of the COS-SAC Fig. 6. Power consumption of the COS-
system SAC system

4.4 Cooling Capacity and COP

The cooling capacity of the ejector COS-SAC system with R-22 refrigerant is 2036 Watts or 8661 BTU
hour' and for R-290 is 3144 Watts or 10737 BTU hour! (Fig. 7). This shows that the dual evaporator
ejector system designed for split air conditioner (SAC) works efficiently. Power consumption of the
test system is only 500 watts. When it is compared to standard SAC for the same capacity the
average compressor power usage is 770 watts, so there is a 35% savings potential from the power
input. In other words, for the arrangement it can be used a compressor with a smaller capacity to get
the same capacity.
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Fig. 7. Cooling capacity of the COS-SAC Fig. 8. COP of the COS-SAC
system system

Fig. 8 shows experimental results on the coefficient of performance (COP) of the test system using R-
22 and R-290 refrigerants. It can be seen the test system with R-22 has a mean COP of 5.80, which is
slightly better that the COP of test system using R-290 with a mean COP of 5.52. When compared
with COP of a standard SAC system with a capillary pipe as the expansion valve, the COP is 3.5.
Therefore by using dual evaporator ejector system, the COP improvement was found to be 36% for
systems with R-290 refrigerant and 39% for system with R-22. This is in agreement with Lawrence
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and Elbel [26] who reported that theoretical COP ejector cycle would not be below when compared
with the system using the expansion valve. There are several theoretical advantages of the two phase
ejector COS multi evaporator system such as improving the distribution of refrigerants, reducing
pressure drop and increasing heat transfer coefficient of refrigerant. COS ejector cycles also have the
advantage in terms of oil return.

5. CONCLUSIONS

Based on the results obtained from the study, it can be concluded that the use of the constant ejector
area COS-SAC dual temperature evaporator system which is intended to be applied for split AC to
replace accumulator in standard ejector system has been successful. The COP system, which uses
R-22 refrigerant, has an average value of 5.80 which is 5.1% better than the COP system using the R-
290 which is 5.52. If compared to standard split air conditioners using capillary tube expansion device,
the tested ejector system contribute about 35% power savings. While the system COP can reach as
high as 5.8 and 5.5 accounted for 36% and 39% increase in performance for the system charged with
R-22 and R-290 respectively.
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