

SOLAR ENERGY FOR FOOD REFRIGERATION

Prospective Application in Indonesia a Hot Climate Country

I Nyoman Suamir, A.Md.T., S.T., M.Sc., Ph.D.

SOLAR ENERGY FOR FOOD REFRIGERATION

Prospective Application in Indonesia a Hot Climate Country

UU no. 28 tahun 2014 tentang Hak Cipta

Fungsi dan sifat Hak Cipta Pasal 4

Hak Cipta sebagaimana dimaksud dalam Pasal 3 huruf a merupakan hak ekslusif yang terdiri atas hak moral dan hak ekonomi.

Pembatasan Perlindungan Pasal 26

Ketentuan sebagaimana dimaksud dalam Pasal 23, Pasal 24, dan Pasal 25 tidak berlaku terhadap:

- Penggunaan kutipan singkat Ciptaan dan/atau produk Hak Terkait untuk pelaporan peristiwa aktual yang ditujukan hanya untuk keperluan penyediaan informasi aktual;
- ii. Penggandaan Ciptaan dan/atau produk Hak Terkait hanya untuk kepentingan penelitian dan pengetahuan;
- Penggandaan Ciptaan dan/atau produk Hak Terkait hanya untuk keperluan pengajaran, kecuali pertunjukan dan fonogram yang telah dilakukan Pengumuman sebagai bahan ajar, dan
- iv. Penggunaan untuk kepentingan Pendidikan dan pengembangan ilmu pengetahuan yang memungkinkan suatu Ciptaan dan/atau produk Hak Terkait dapat digunakan tanpa izin Pelaku Pertunjukan, Produser Fonogram, atau Lembaga Penyiaran.

Sanksi Pelanggaran Pasal 113

- Setiap Orang yang dengan tanpa hak melakukan pelanggaran hak ekonomi sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf i untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 1 (satu) tahun dan/atau pidana denda paling banyak Rp 100.000.000 (seratus juta rupiah).
- 2. Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf c, huruf d, dan huruf f dan/atau huruf h untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 3 (tiga) tahun dan/atau pidana denda paling banyak Rp 500.000.000 (lima ratus juta rupiah).

I Nyoman Suamir, A.Md.T, S.T., M.Sc., Ph.D.

SOLAR ENERGY FOR FOOD REFRIGERATION

Prospective Application in Indonesia a Hot Climate Country

Cerdas, Bahagia, Mulia, Lintas Generasi.

SOLAR ENERGY FOR FOOD REFRIGERATION PROSPECTIVE APPLICATION IN INDONESIA A HOT CLIMATE COUNTRY

I Nyoman Suamir

Desain Cover : Herlambang Rahmadhani

> Sumber : I Nyoman Suamir

Tata Letak : Gofur Dyah Ayu

Proofreader : Mira Muarifah

Ukuran : Xx, 119 hlm, Uk: 15,5x23 cm

> ISBN 978-623-02-3651-8

Cetakan Pertama: November 2021

Hak Cipta 2021, Pada Penulis

Isi di luar tanggung jawab percetakan

Copyright © 2021 by Deepublish Publisher All Right Reserved

Hak cipta dilindungi undang-undang Dilarang keras menerjemahkan, memfotokopi, atau memperbanyak sebagian atau seluruh isi buku ini tanpa izin tertulis dari Penerbit.

PENERBIT DEEPUBLISH (Group Penerbitan CV BUDI UTAMA) Anggota IKAPI (076/DIY/2012)

Jl. Rajawali, G. Elang 6, No. 3 Drono, Sardonoharjo, Ngaglik, Sleman Jl. Kaliurang Km 9.3 – Yogyakarta 55581 Telp/Fax: (0274) 45334527 Website: www.deepublish.co.id www.penerbitdeepublish.co.id Email: deepublish@ymail.com

FOREWORD

I should be grateful to the All-Mighty God, with His Spirit, I can accomplish this monograph. The monograph presents investigation results on the prospective application of solar energy for food refrigeration in Indonesia a hot climate country.

has abundant renewable Indonesia energy resources. However, the country only consumed 11.3% renewable energy of the total energy consumption in 2020 and only 0.05% was from solar energy. It results in high CO₂ emissions. Solar energy systems would be as an option to reduce the CO_2 emissions of this country. The investigation aims to study the application of solar energy to provide cooling for medium temperature food refrigeration based on Indonesian weather conditions. The project additionally analyses the environmental impact relating to CO₂ emissions, and to investigate the economical aspect. CFD software is applied on modelling the modification of the chiller generator, while F-Chart and Microsoft Excel spreadsheet are used to analyse the solar system and the economics of the technology.

The optimum configuration of solar driven absorption chiller consists of an ammonia-water absorption chiller of cooling capacity 12.8 kW with 800 litres storage tank and 44 m² parabolic trough collectors. The system can harness 71,643 kWh renewable energy with average solar fraction of 0.38. It was found to have a payback period of 20 years. However, the replacement of a vapour compression cycle in Indonesia with a solar driven absorption chiller provides a tremendous impact to the environment. A reduction of 23.4% of CO₂ emission would be achieved.

This monograph can be used as an intellectual and scientific medium for especially lecturers in the Politeknik Negeri Bali and generally researchers who work in the fields of renewable energy and refrigeration. Of course, this monograph still has many inadequacies and weaknesses, for those the author is happy to receive inputs for the improvement of this monograph. Thank you.

Badung, October 2021

Author

TABLE OF CONTENTS

FOR	EWORD	v
TAE	BLE OF CONTENTS	vii
FIG	URES	x
TAE	BLES	XV
NOT	CATIONS	xvi
ABE	BREVIATIONS AND GLOSSARY	xviii
CHA	APTER 1 INTRODUCTION	1
1.1	Context of the Monograph	1
1.2	Aims and Objectives	3
1.3	Limitations	4
1.4	Brief Description of Contents	5
CHA	APTER 2 COUNTRY OVERVIEW	7
2.1	General	7
2.2	Weather	8
2.3	Energy	
2.4	Renewable Energy Resources	
CHA	APTER 3 LITERATURE REVIEW	
3.1	Environment and Low Carbon Developments	22
3.2	Absorption Cooling	
	3.2.1 Absorption refrigeration technology	22
	3.2.2 Ammonia-water absorption equipment	23
	3.2.3 Commercial Refrigeration	
3.3	Solar Energy Driven Absorption Chillers	32
		vii

3.4	Solar Collectors	33
CHA	APTER 4 METHODS	.31
4.1	Approach Adopted	31
4.2	Data Collection	33
4.3	Experimental Test Facility	33
4.4	Data Processing and Analysis	41
4.5	CFD Modelling Methods	41
4.6	F-Chart Solar System Analysis	42
CHA	APTER 5 RESULTS	.43
5.1 5.2	Modification on Existing Absorption Chiller CFD Simulation 5.2.1 Simulation conditions and results	44
5.3	5.2.3 Variation on generator surface temperature Solar Absorption Chiller Modelling	52 56
515	 5.3.1 Solar absorption chiller configuration and conditions . 5.3.2 Solar absorption chiller modelling on Indonesian weather conditions 	58
5.4	Economic analysis	
5.5	CO ₂ Emissions	74
CHA	APTER 6 DISCUSSION	.76
6.1 6.2 6.3	Modified Chiller Generator Analysis Analysis on the Solar Energy Driven Absorption Chiller Environmental and Economic Viability	80
CHA	APTER 7 CONCLUSIONS	.86
7.1 7.2	Conclusions Recommendation	
REF	ERENCES	.89
BIBI	LIOGRAPHY	.94

APPENDICES	96
Appendix-A: CFD on Modelling the Generator Jacket	. 96
Appendix-B: CFD on Modelling Generator Surface Temperature	100
Appendix-C: Generator Jacket's Drawings	102
Appendix-D: Parabolic Trough Solar Collector	107
Appendix-E: Economic Analysis Spreadsheets	109
Appendix-F: CO2 Intensities of Fuels and Electricity	110
INDEX	111
AUTHOR BIOGRAPHY	118

FIGURES

Figure 2.1	Location of Indonesia and neighbouring
	meteorological stations10
Figure 2.2	The long-term daily average global irradiation of
	Indonesia and neighbouring countries
Figure 2.3	The daily average irradiation in Indonesia and
	neighbouring countries11
Figure 2.4	The percentage occurrence of daily irradiation
	distribution in Indonesia10
Figure 2.5	The percentage occurrence of daily irradiation
	distribution in neighbouring countries 11
Figure 2.6	Energy consumption growth of Indonesia in
	commercial sector 13
Figure 2.7	Energy consumption Indonesia in commercial
	sector (2005) 14
Figure 2.8	Indonesian energy share of total world energy
	(2006)
Figure 2.9	Electricity price variation in Indonesia (2001 up
	to 2006)15
Figure 2.10	Price variation of diesel fuel for industry in
	Indonesia 2001 up to 2006 16
Figure 2.11	Electricity price in some countries over the world
	2006
Figure 2.12	Renewable energy usage in Indonesia 2005 20

Figure 2.13	New and renewable energy (NRE) share in
	Indonesia of the year 2020 and targeted
	share in 202521
Figure 2.14	Solar energy share in 2020 of total NRE
	share which accounted for only 0.05% of
	total energy Indonesia 21
Figure 3.1	Carbon dioxide intensities of fuels and
	electricity for selected countries
Figure 3.2	The similarities of compression and
	absorption cycle 23
Figure 3.3	Schematic of single effect direct-fired,
	air-cooled liquid ammonia-water chiller 24
Figure 3.4	Typical single effect ammonia-water
	direct-fired air-cooled absorption chiller 24
Figure 3.5	Percentage distribution of display
	refrigerators in a typical supermarket
Figure 3.6	US-National average electrical energy
	used in grocery and convenience stores 2002. 32
Figure 3.7	Schematic of solar collectors for process heating
	and power generation35
Figure 4.1	The flowchart of project activities
Figure 4.2	Experimental test facility with indirect heating
	generator for the absorption unit

Figure 5.1	Modified generator with heat transfer fluid jacket
	system 44
Figure 5.2	Generator jacket model produced on CFD pre-
	processor Gambit 2.3 45
Figure 5.3	Contours of fluid temperature (K) in the
	generator jacket interior 47
Figure 5.4	Contours of temperature on the generator's
	surface of all models 42
Figure 5.5	Contours of velocity magnitude (m/s) in the
	generator jacket interior 42
Figure 5.6	Flow path line s in the jacket interior coloured by
	velocity magnitude 50
Figure 5.7	Contours of absolute pressure (Pa) 51
Figure 5.8	Pressure loss factors on different shape of
	orifices 53
Figure 5.9	Generator jacket construction an AutoCAD
	drawing 55
Figure 5.10	Contours of generator's surface temperature (K)
	in various inlet temperature 56
Figure 5.11	Solar driven ammonia-water absorption chiller
	configuration 52
Figure 5.12	Indonesian weather data entry in F-Chart
	window 62
Figure 5.13	F-Chart window for entering the applied general
	solar heating system 63
Figure 5.14	Parabolic trough or one axis tracking collector
	data entry in F-Chart window 56
Figure 5.15	Collector efficiency for a typical parabolic trough
	and a typical parabolic dish 58

Figure 5.16	Optimum parabolic trough axis slope angle and
	axis azimuth angle for Indonesian weather
	conditions 59
Figure 5.17	Thermal output including collector heat, heat
	load for chiller, heat loss on thermal storage,
	heat supplied by auxiliary boiler and solar
	fraction (tabular presentation) 59
Figure 5.18	Thermal output including collector heat, heat
	load for chiller, heat loss on thermal storage and
	heat supplied by auxiliary boiler (graphically
	presented)60
Figure 6.1	Mechanism in selecting the appropriate model
	for the generator jacket 66
Figure 6.2	Variation on generator surface temperature at
	various temperatures input
Figure 6.3	Variation on generator surface temperature at
	different heat flow68
Figure 6.4	Effect of thermal storage size on the heat loss,
	heat required by auxiliary boiler and renewable
	heat delivered by parabolic trough collector 69
Figure 6.5	The fluid temperature drop at various storage
	volumes and various time taken

Figure 6.6	The effect of solar collector area to the auxiliary
	boiler heat required, solar energy delivered and
	life cycle savings71
Figure 6.7	Monthly renewable energy delivered and solar
	fraction achieved by the system72

TABLES

Table 2.1	Ambient temperature (°C) for three cities in Indonesia11
Table 2.2	NASA data -Ambient temperature (°C) and RH (%) for three cities in Indonesia
Table 5.1	Comparison matrix of the generator jacket models
Table 5.2	Diameter and number of orifices on the generator jacket
Table 5.3	Variation on generator surface temperature at
	various heats and temperature input
Table 5.4	Weather data for Kupang – Eastern Region of
	Indonesia 53
Table 5.5	Test slope value of parabolic trough based on
	Indonesian weather conditions
Table 5.6	The solar collector area and its effect to the
	auxiliary boiler heat required,61
Table 5.7	Economic analysis on the solar absorption
	compared to vapour compression chiller 62

NOTATIONS

٨	$-2rop(m^2)$
A	$= \operatorname{area} (m^2)$
a	= permeability (m ²) (for porous media) or absorptance
(for sola	ar collector)
C ₂	= porous jump coefficient (m ⁻¹)
Cp	= heat transfer coefficient (J/kgK)
δ	= the plate thickness (mm)
d	= diameter (mm)
ξ	= pressure loss factor
η	= efficiency
F _R	= collector heat removal factor
h₅	= surface heat transfer coefficient (W/m ² K)
I _{b,a}	= normal incident solar irradiation (W/m ²)
k	= thermal conductivity (W/mK)
m	= mass flow rate (kg/s)
μ	= dynamic viscosity (Pa.s)
Р Ta	
	= ambient temperature (°C)
T _{avg}	= average temperature (°C)
T _f	= fluid temperature (°C)
T_{max}	= maximum temperature (°C)
T_{min}	= minimum temperature (°C)
Ts	= surface temperature (°C)
т	= transmittance
р	= pressure (Pa)
Q	= heat flow (kW)
q	= the rate of heat flow (heat flux) (W/m^2)

- U_L = solar collector overall heat transmittance (W/m²K)
- v = velocity (m/s)
- \dot{V} = Volume flow rate (m³/s)

ABBREVIATIONS AND GLOSSARY

	Air and diving and Define ration to this to
ARI	Air conditioning and Refrigeration Institute
ASHRAE	American Society of Heating Refrigerating
	Air- conditioning Engineers
BOE	Barrel Oil Equivalent (1 BOE equivalent to 0.2
	ton coal; 0.1437 kilolitres fuel oil; 0.1242 ton
	LNG or 1.631 MWh electricity))
CFD	Computational Fluid Dynamics
CHP	Combined Heat and Power
CIBSE	Chartered Institution of Building Services
	Engineers
CO ₂	Carbon dioxide
Commercial sector	Business establishments that are not
	engaged in transportation or in
	manufacturing or other type of industrial
	activities (mining, agriculture or
	construction). This sector includes hotels,
	motels, restaurants, wholesale businesses,
	retail stores, laundries and other services
	enterprises: health, social and educational
	institutions (Purwanto <i>et al.</i> , 2006)
DEFRA	Department for Environment, Food and Rural
	Affairs
Fossil fuel	An energy source formed in the earths crust
	from decayed organic material. The common
	fossil fuels are petroleum, coal and natural
	gas.

Food refrigeration	Application of a refrigeration system on the prevention and retardation of microbial, physiological, and chemical changes in foods. It also plays a major role in maintaining a safe food supply, nutritional content and retaining characteristics such as flavour, colour and texture (ASHRAE, 2006)
GAX	Generator absorber heat exchange
GW	Gigawatt (one billion watts or one thousand megawatts)
НХ	Heat Exchanger
IDR	Indonesian Rupiah (Currency of Indonesia)
Insolation	Incident solar radiation: the energy flux from
	the sun falling onto a surface on the earth in
	watts per square meter of collector
IPPC	Intergovernmental Panel on Climate Change
kW	Kilowatt
kWh	Kilowatt hour
LNG	Liquefied Natural Gas (natural gas-primarily
	methane that has been liquefied by reducing
	its temperature to -162°C at atmospheric
	pressure
LPG	Liquefied petroleum gas such as propane and
	butane produced at refineries or natural gas
	processing plant
MW	Megawatt
MWh	Megawatt hour = 1000 kilowatt hour
NASA	National Aeronautics and Space
	Administration
NOx	Oxides of nitrogen, the sum of NO and NO_2
Primary energy	All energy consumed by end users, excluding
	electricity but including the energy consumed
	at electric utilities to generate electricity

PLN	Perusahaan Listrik Negara (State-owned
	Electricity Company)
ppb	Part per billion
ppm	Part per million
RH	Relative Humidity, the unit in %
SOx	Oxides of sulphur, in emissions,
	predominantly SO ₂

Dr. I Nyoman Suamir joined the Bali State Polytechnic (Politeknik Negeri Bali) early in his career after completing his Diploma III in Bandung in 1990 as an instructor in the mechanical engineering department. At the same time, he also did an industrial internship at a hotel in Bali as a mechanical supervisor.

He obtained a bachelor's degree (ST) in Mechanical Engineering Energy Conversion at the Bandung Institute of Technology (ITB). His

MSc and PhD degrees were obtained at Brunel University, London, UK in the field of Building Services Engineering with Sustainable Energy, Refrigeration and Built Environment. He has accumulated more than 12 years of research and development experience in the fields of refrigeration, HVAC (Heating Ventilating and Air Conditioning) and sustainable energy technology. He has unique skills in modelling refrigeration and air conditioning systems and other energy systems with the U-CoolS, U-RefS and U-MEPS programs based on the EES (Engineering Equations Solver) program. The models developed have been used intensively in the teaching and learning process at the Department of Mechanical Engineering at the Bali State Polytechnic and have gained copyrights from the Ministry of Law and Human Rights of the Republic of Indonesia.

Dr. I Nyoman Suamir has also developed a novel solar driven food cold storage system utilizing Bio-Nano PCM as thermal energy storage. As a principal investigator, he has obtained significant research funding to support his various projects. He has also published over 48 peer reviewed scientific journal and conference papers.

Dr. I Nyoman Suamir has more than 20 years of teaching experience. He has taught a number of subjects related to Refrigeration, HVAC (Heating Ventilating and Air Conditioning), Building Utilities, Energy and Sustainable Technology. His many teaching achievements include setting up new study programs: Refrigeration and Air Conditioning Study Program (Diploma III) and Utility Engineering Technology Study Program (Diploma IV or Applied Bachelor's Degree), curriculums development, editing teaching books and materials, developing teaching facilities and organizing industrial collaborations. He is also very active in professional organizations both nationally and internationally. He served as a chair of Chapter Technology Transfer Committee (CTTC) of the ASHRAE chapter Indonesia in 2016-2017 and now remains as a member of ASHRAE (American Society of Heating Refrigerating and Air Conditioning Engineers), PII (Indonesian Engineers Association) and ISAS (Indonesian Society of Applied Science).

Penerbit Deepublish (CV BUDI UTAMA) JI. Kaliurang Km 9,3 Yogyakarta 55581 Telp/Fax : (0274) 4533427 Anggota IKAPI (076/DIY/2012)

cs@deepublish.co.id
 Penerbit Deepublish

@ @penerbitbuku_deepublish

www.penerbitdeepublish.com

Kategori :