I Gede Artha Negara ICOSTAS_IG Artha Negara.pdf

Politeknik Negeri Bali

Document Details

Submission ID trn:oid:::3618:71788074

Submission Date Nov 20, 2024, 8:07 PM GMT+8

Download Date Nov 20, 2024, 8:09 PM GMT+8

File Name ICOSTAS_IG Artha Negara.pdf

File Size 366.1 KB 8 Pages

2,340 Words

12,663 Characters

7% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Match Groups

- 13 Not Cited or Quoted 7% Matches with neither in-text citation nor quotation marks
- **91 O Missing Quotations 0%** Matches that are still very similar to source material
- **0** Missing Citation 0% Matches that have quotation marks, but no in-text citation

O Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

Top Sources

3%

4%

6%

Internet sources

Submitted works (Student Papers)

Publications

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

13 Not Cited or Quoted 7%
Matches with neither in-text citation nor quotation marks

- •• 0 Missing Quotations 0% Matches that are still very similar to source material
- 0 Missing Citation 0% Matches that have quotation marks, but no in-text citation
- O Cited and Quoted 0%
 Matches with in-text citation present, but no quotation marks

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Internet	
technodocbox.com	1%
2 Submitted works	
Campbellsville University on 2021-08-13	1%
Publication Putu Wijaya Sunu, Daud Simon Anakottapary, Wayan G. Santika. "Temperature A	1%
	170
4 Internet	
www.coursehero.com	1%
5 Submitted works	
Florida Virtual School on 2024-05-25	1%
6 Internet	
jurnal.ugm.ac.id	1%
7 Publication	
Samirah Syeed. "A Framework with System Prototype for the Implementation of	0%
8 Submitted works	
University of Northumbria at Newcastle on 2015-04-21	0%
9 Internet	
agris.fao.org	0%
10 Publication	
Ferzan Katircioğlu, Zafer Cingiz, Yusuf Çay, Ali Etem Gürel, Ahmet Kolip. "Perform	0%

Top Sources

- 4% 🔳 Publications
- 6% **L** Submitted works (Student Papers)

11 Publication	
J. Carmeliet, H. Hens, G. Vermeir. "Research in Building Physics", A.A. Balkem	a Pu 0%
12 Submitted works	
Glyndwr University on 2022-01-16	0%
13 Publication	
Haizhu Zhou, Guanghui Dong, Lining Zhou, Rui Ma, Xiaofeng Chen, Liang Me	ng. " 0%

IoT-Enabled Air Conditioning Real-time Monitoring: An Arduino Uno R4 Approach for Indoor Temperature, Humidity, and Electrical Characteristics

I Gede Artha Negara¹, Daud Simon Anakottapary ², and Ida Bagus Gde Widiantara³

¹⁻³ Department of Mechanical Engineering, Bali State Polytechnic, 80361, Indonesia artha_negara@pnb.ac.id

Abstract. This research focused on the monitoring of an air conditioning cooling system using an IoT platform. The IoT device used in this study was the Arduino Uno R4, along with the Arduino IoT Cloud for the online platform. The air conditioning system had a capacity of 2.5 kW and was equipped with an inverter, allowing for efficient energy use and temperature control. The results showed that the average temperature differential was 10°C between the inlet and outlet of the evaporator. Regarding the electrical results, it can be concluded that power consumption and electrical current were directly proportional. The higher the electrical current, the higher the power cosumption. The average power consumption during monitoring was 388 W. Additionally, this research provides a smart solution for monitoring the performance of air conditioning systems using IoT devices. The monitoring also reflects the actual condition of air conditioning system. By leveraging IoT technology, users can access real-time data and analytics and contributing to smart home technologies.

Keywords: Air conditioning, IoT, Real-time monitoring, Arduino Uno R4

1 Introduction

The development of Internet of Things (IoT) technology is currently very rapid. This is because IoT has versatile capabilities such as automation and monitoring systems. The IoT role in air conditioning system provided energy loads, indoor air quality (IAQ) and low costs information (Negara et al., 2024). Adopting this technology allows the occupants to monitor their air conditioning system in actual conditions. In addition, IoT-driven sensor technology offers processing and data storage in order to maintain the air conditioning system (Meng et al., 2024).

The air conditioning system is one of the most vital systems for maintaining the indoor environment in order to secure the physical and mental health of residents. However, without using capable devices observing the specific parameters including room temperature, humidity levels as well as energy consumption is impossible (Liu et al., 2024). Therefore, the IoT-driven sensor technology is present to control and monitor each network-based parameter. This device is made based on smart sensors and integrated each part (Nast et al., 2023). Several IoT devices have developed rapidly nowadays, such as the Arduino R4 microcontroller (Negara et al., 2023).

The R4 microcontroller is the latest variant of the microcontroller device from the previous series, the Arduino Uno R3. This microcontroller has a WiFi module in its chip set. Unlike the Arduino Uno R3, the Arduino Uno R4 is IoT based. The main advantage of this device is its capability for direct integration with the IoT ecosystem (Bohara et al., 2023). This is facilitated by the device's built-in WiFi module, which eliminates the need for additional shielding or external equipment to enable IoT connectivity (Nast et al., 2023). Moreover, Arduino R4 offers extensive peripheral integration, enhanced signal processing capabilities and highest performance than previous series of Arduino Uno (Erham & Inten, 2020).

This research focuses on monitoring parameters, including temperature, relative humidity and electrical parameters of the air conditioning cooling system. The aim of this research is to obtain real-time monitoring of the air conditioning cooling system under actual conditions. The monitoring applied in this study was integrated with IoT an IoT system. The Arduino Uno R4 microcontroller was used in this study for data logging and IoT integration.

2 Methodology

Air conditioning model that applied in this research was split wall 2.5 kW Inverter with R-410A. The technical data of the air conditioning can be seen in Table 1. The main instruments applied in this study include DS18B20, DHT22 and PZEM-004T. In order to monitoring each parameter, arduino uno R4 microcontroller used in this study for data logging. This microcontroller was the latest variant provided by the ESP32-S3 Internet of Things (IoT) system. In addition, this microcontroller is capable of functioning as an IoT device and monitoring remotely without requiring additional components, unlike a conventional microcontroller. Technical details of Arduino Uno R4 can be seen in Table 2.

This microcontroller was integrated with Arduino IDE software for algorithm design according to the research objectives. DS18B20 sensors were installed on both the inlet and outlet sides of the evaporators. The DS18B20 sensor's measurement range is from -55° C to 125° C with a specific error of $\pm 0.5\%$ (Khairudin et al., 2021). The relative humidity sensor DHT22 was positioned similarly to the DS18B20 on both the inlet and outlet sides of the evaporator. Both the thermocouple and DHT22 work to monitor the temperature and relative humidity of the air conditioning system. The schematic of the research monitoring can be seen in Fig. 1.

2

Submission ID trn:oid:::3618:71788074

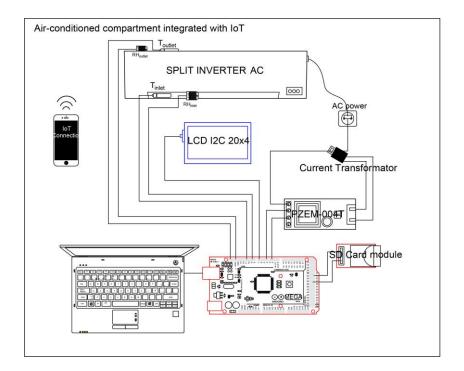


Figure 1. Schematic experimental design for an air conditioning system with integrated IoT

M - 4-1	Refrigerant: R-410A		
Model	Unit	Value	
Heating			
Input power	kW	0.58	
Rated current	А	3	
Maximum power	kW	2.06	
Maximum current	А	9.5	
Compressor speed range	RPM	600-3600	
Capacity	kW	3.2	
Cooling			
Input power	kW	0.485	
Rated current	А	2.7	
Maximum power	kW	2.06	
Maximum current	А	9.5	
Compressor speed range	RPM	600–3600	
Capacity	kW	2.5	

Table 1. In-depth details on the specifications of split inverter AC units

Submission ID trn:oid:::3618:71788074

Table 2. Comprehensive specifications of the arduino uno R4

Microcontrroller	ARM Cortex-M4
Operating voltage	1.6 - 5.5V
Wifi module	ESP32-S3-Mini-1-N8
Input voltage	6-20V
Digital I/O pins	14 of which provide PWM output
Analog input pins	5
DC current per I/O pins	20 mA
Flash memory	256 kB
SRAM	32 kB
EEPROM	4 kB
Clock speed	16 MHz

In addition, the PZEM-004T sensor was utilized in this study to monitor electrical parameters, including power consumption and electrical current. This sensor is connected to the power source of the air conditioning system. An SD card module is incorporated in this study to store monitoring data. Smartphones and PCs are used for remote monitoring as long as they are connected to a Wi-Fi network. The IoT platform used in this research was Arduino IoT cloud. This platform provides an advanced interface to connect IoT applications. Arduino IoT cloud was selected in this study due to its reliability and validity.

This study was conducted in the Air Conditioning and Refrigeration Laboratory, Department of Mechanical Engineering, Bali State Polytechnic. The remote temperature of air conditioning was maintain at 16°C during monitoring. The room load was assumed to be constant throughout the monitoring period. This assumption implies that there were no significant variations in the thermal load during the study.

3 Result and Discussion

3.1 Indoor Monitoring

Indoor monitoring that investigated including temperature and relative humidity. Fig. 2 shows the temperature variation between temperature inlet and outlet of the evaporator. From the observation, the temperature outlet decrease significantly to 12°C at around 1500 s. Subsequently, the outlet temperature tend to be constant during monitoring. On the other hand, the inlet temperature was observed considerably higher than the outlet temperature. At 1500 s, the inlet temperature was found 24.5°C. However, throughout the monitoring, the inlet temperature of the evaporator was slight decrease to 21°C. Fig. 2 also shows the temperature differential between the temperature inlet and outlet of the evaporator. It can be seen at around 200 s, the temperature differential reached up to 10°C. Furthermore, the temperature differential

during the monitoring was within the range of 10° C – 11° C. The temperature differential between inlet and outlet of the evaporator is a key indicator of heat transfer efficiency (Chua et al., 2023). The larger the temperature differential, the more heat is being removed from the air passing through the evaporator.

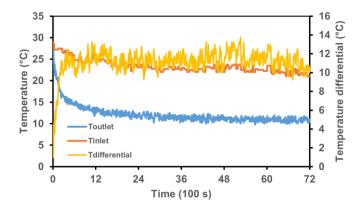


Figure 2. Variation in temperature from the inlet and the outlet of the evaporator

Fig. 3 shows the relative humidity variations between inlet and outlet of the evaporator. It can be seen the relative humidity on the outlet of the evaporator sharply increase to 90% at approximately 200 s and relatively constant during monitoring. This is due to the evaporation process occuring within the evaporator (Randazzo et al., 2023; Raunima et al., 2023). In contrast, the relative humidity on inlet of the evaporator was decreased. At around 3600 s the relative humidity was found 60% and slight fluctuate over 7200 s investigation. The stabilization of the inlet relative humidity at around 60% suggests that the system has reached a steady state, where the rate of moisture removal from the air is balanced by the rate of moisture addition from the environment.

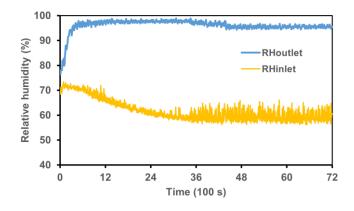


Figure 3. Variation in relative humidity from the inlet to the outlet of the evaporator

3.2 Electrical Monitoring

The electrical parameters monitored in this research include power and electrical current as shown in Fig. 4. From the Fig. 4, both power and electrical current sharply increase at around 200 s. The average power consumption is 388 W and remains relatively stable througout the monitoring period. This stability is due to the air conditioning system equipped with inverter technology, which allows the compressor to operate more slowly than in conventional air conditioning system. The inverter technology utilized a variable frequency drive (VFD) that modulates the compressor's speed to match the cooling demand (Bohara et al., 2023). This modulation is accomplished by altering the frequency of the electrical supply to the compressor motor, thereby changing its rotational speed. In addition, the inverter reduces the binary on/off cycle of the compressor, resulting in increased energy efficiency. Furthermore, the electrical current measured 2.23 A at 200 s and slightly increased to 2.33 A around 400 s. Fig. 4 also shows that both power consumption and electrical current are directly proportional. The higher power consumption, the higher electrical current. The inverter technology maintains this relationship while optimizing the overall energy consumption by adjusting the compressor's speed and, consequently, its power draw to match the cooling requirements more precisely than traditional on/off systems.

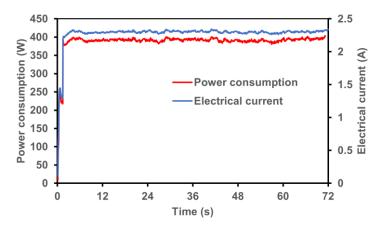


Figure 4. Variation in power consumption and electrical current of the air conditioning

4 Conclusion

The 2.5 kW inverter air conditioning system has been monitored in this research using an IoT platform. The parameters that were monitored included temperature, relative humidity, power consumption as well as electrical current. The IoT platform used was the Arduino IoT Cloud. This platform allows users to monitor various interesting interfaces. The monitored temperatures indicated an average temperature differential of 10°C between the inlet and outlet of the epavorator. This result indicates that the air conditioning system is effcient. Furthermore, the electrical results show

that power consumption and electrical current are directly proportional. In addition, this study provides a remarkable solution for monitoring the performance of air conditioning based on IoT. The IoT can reflect the actual condition of air conditioning system.

Acknowledgment

The authors acknowledge the financial support received from P3M of Bali State Polytechnic Indonesia.

References

- Bohara, B., Pandey, B., Pungaliya, R., Patwardhan, S. C., & Banerjee, R. (2023). Experimental Study of the Model Predictive Control for a Residential Split Air Conditioner. *E-Prime -Advances in Electrical Engineering, Electronics and Energy*, 3(November 2022), 100099. https://doi.org/10.1016/j.prime.2022.100099
- Chua, P. L. C., Takane, Y., Ng, C. F. S., Oka, K., Honda, Y., Kim, Y., & Hashizume, M. (2023). Net impact of air conditioning on heat-related mortality in Japanese cities. *Environment International*, *181*(October), 108310. https://doi.org/10.1016/j.envint.2023.108310
- Erham, E., & Inten, R. N. (2020). Design of a new online monitoring system of COP based on Arduino Uno with application to split A/C. *IOP Conference Series: Materials Science* and Engineering, 830(4). https://doi.org/10.1088/1757-899X/830/4/042030
- Khairudin, M., Ibrahim, B., Arifin, F., Rohjai, B., Duta, A. P., Nurhidayah, F., & Mahendra, I. G. (2021). Temperature control based on fuzzy logic using atmega 2560 microcontroller. *Journal of Physics: Conference Series*, 1737(1). https://doi.org/10.1088/1742-6596/1737/1/012044
- Liu, S., Ge, W., & Meng, X. (2024). Influence of the shading nets on indoor thermal environment and air-conditioning energy consumption in lightweight buildings. *Energy Reports*, 11(April), 4515–4521. https://doi.org/10.1016/j.egyr.2024.04.032
- Meng, L., Sun, X., Zhang, Y., & Tang, X. (2024). Effects of high temperature and high relative humidity drying on moisture distribution, Effects of high temperature and high relative humidity drying on moisture distribution, starch microstructure and cooking characteristics of extruded whole buckwheat. *Journal of Future Foods*, 4(2), 159–166. https://doi.org/10.1016/j.jfutfo.2023.06.007
- Nast, B., Reiz, A., & Sandkuhl, K. (2023). Iot-based diagnostic assistance for energy optimization of air conditioning facilities. *Procedia Computer Science*, 219(2022), 416– 421. https://doi.org/10.1016/j.procs.2023.01.307
- Negara, I. G. A., Anakottapary, D. S., Putu, L., Midiani, I., Wayan, I., Made, I. D., & Santosa, C. (2023). Experimental Study of Cooling Performance and Electrical Parameters in a Microcontroller-Driven Inverter AC System. 23(2), 81–90.
- Negara, I. G. A., Anakottapary, D. S., Widiantara, I. B. G., Midiani, L. P. I., Nindhia, T. G. T., & Santhiarsa, I. G. N. N. (2024). Integrated microcontroller mq sensors for monitoring biogas: Advancements in methane and hydrogen sulfide detection. *Jurnal Teknosains*,

13(2), 140. https://doi.org/10.22146/teknosains.91936

- Randazzo, T., Pavanello, F., & De Cian, E. (2023). Adaptation to climate change: Airconditioning and the role of remittances. *Journal of Environmental Economics and Management*, 120(February 2022), 102818. https://doi.org/10.1016/j.jeem.2023.102818
- Raunima, T., Laukkarinen, A., Kauppinen, A., Kiviste, M., Tuominen, E., Ketko, J., & Vinha, J. (2023). Indoor air temperature and relative humidity measurements in Finnish schools and day-care centres. *Building and Environment*, 246(October), 110969. https://doi.org/10.1016/j.buildenv.2023.110969

✓ iThenticate Page 12 of 12 - Integrity Submission