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Abstract. Feature extraction is one of stages in the information retrieval system that used to 
extract the unique feature values of a text document. The process of feature extraction can be 
done by several methods, one of which is Latent Dirichlet Allocation. However, researches 
related to text feature extraction using Latent Dirichlet Allocation method are rarely found for 
Indonesian text. Therefore, through this research, a text feature extraction will be implemented 
for Indonesian text. The research method consists of data acquisition, text pre-processing, 
initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, 
Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse 
Document Frequency KMeans which commonly used for feature extraction. The evaluation 
results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method 
is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that 
Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better 
than Term Frequency Inverse Document Frequency KMeans method.  

 

1. Introduction 
Information retrieval through digital text media requires several stages to produce information that 
meets user requirement. The first step is converting digital text from its original source into filtered 
text units to produce useful text units for further processing. The next stage is extracting the meaning 
contained within each unit of text so that the text unit can represent the feature of user information 
requirement. The last step is comparing the result of text unit representation to user information 
requirement to get the highest similarity value, so as be the most information required by user.  

Each stage of information retrieval has vital function and is interdependent with one another. If text 
units that have been filtered at the text processing stage are not the best text units, surely the result of 
the representation at the extraction stage can not represent the criteria of the user information 
requirement. So that, the process of comparison between extraction results and user information 
requirement will generates some documents that are unable to satisfy the user. Moreover, information 
retrieval results are not only useful to this needs only, but also very useful for other needs such as 
automatic document clustering and summarization. Therefore, all three stages in the process of 
information retrieval are important to be examined. 

In the previous research, the phase of digital text processing from its original source has been 
successfully implemented for the Indonesian text [1]. This research has processed digital news 
documents using stopword dictionary, root word dictionary and the rules of affixes deletion. Text 
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documents that have been parsed into text units are filtered using stopwords dictionary. The filtered 
text units have stemmed using a Porter-like Stemmer algorithm based on the rules of affixes deletion 
and root word dictionary. The testing process for stemming results has produced precision and recall 
value which are quite good but still to be optimized.  

Text unit extraction can be done automatically by utilizing several methods, such as the frequency 
of word occurrence in documents (TF-IDF) that have been commonly used. Zhao used TF-IDF to 
represents each document in corpora and implemented it to graph regularized with data reconstruction 
for text clustering [2]. Tutkan used average TF-IDF score from each term in each document for 
classification [3]. Noh used TF-IDF, frequency, variance and K-Means clustering for document 
analysis [4]. Ceci used TF-IDF in presenting a word in the sentence for document image 
summarization [5].  

As information retrieval technology advances, text extraction today tends to be based on topics 
because a unit of text is not only capable of representing only one meaning, but can represent several 
meanings in different contexts. One of the topic based methods is Latent Dirichlet Allocation (LDA) 
that was introduced by Blei [6]. LDA is very interesting to be examined with several inference 
methods, such as Variational Tempering [7], Stochastic Variational Inference [8], Structured 
Stochastic Variational Inference [9] and Gibbs Sampling [10]. Many researchers have implemented 
LDA for feature extraction such as in Chinese reviews [11], friend recommendation system for social 
networks [12], predicting risk of credit in banking [13] and interpreting public sentiment on Twitter 
[14]. 

Text unit extraction by LDA requires an initialization process to determine the initial topic for each 
text unit. In the classic LDA, this is done using a multinonimal random function. The difference 
between LDA and other topic-based methods is LDA extracting text units into three levels. The 
deepest level is extracting the meaning of each text unit in each document by calculating its 
probability and defining a new topic for the text unit. This process is done continuously until it reaches 
a determined threshold value or convergent. The second level is determining topic distribution of each 
document based on the probability and topic of the converged text unit. The result is that each 
document can represent several topics with their respective probabilities. The outer level is 
determining the distribution of topics for the corpus (set of documents) based on document distribution 
topic. Thus, it can be concluded that LDA is not only useful for extracting the meaning of the text unit, 
but at the same time being able to make soft clustering for documents based on topic. 

Researches on LDA had been done previously for Indonesian text. The first research was compared 
the performance of LDA using Mean Variational Inference and Gibbs Sampling reasoning algorithms 
[15]. The test results showed the Gibbs Sampling reasoning algorithm performs better on LDA than 
Mean Variational Inference for Indonesian text. The second research has developed the classical Gibbs 
Sampling algorithm by adding the concept of fuzzy logic [16]. The test results showed that Fuzzy 
Gibbs Sampling algorithm performs better on LDA than Gibbs Sampling classic. In these research, the 
extracting of text units for Indonesian was focused on the use of LDA methods and the tests was 
conducted only for the LDA method itself. Testing is not done by comparing it with non-topic based 
methods such as TF-IDF, so it is not known whether its performance is really better to apply to 
Indonesian text. Therefore, through this research, performance testing is done by comparing LDA 
method with TF-IDF method for Indonesian text with some improvement. The first research using 100 
document while this research use 500 document. The second research used the initialization value of 
the frequency of word occurrence while this research used multinomial random values. In addition, 
considering that LDA can automatically perform document clustering, in this research the TF-IDF 
method is implemented with K-Means to cluster document text by the number of repetitions adjusted 
for the repetition achieved by the LDA. 
 

2. Research Method 
This research is carried out following the flow of information retrieval process to ensure 
interconnection between interacting processes, as shown in figure 1. 
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Figure 1. Research Method Flowchart. 
 
 

2.1. Data Acquisition 
Data acquisition stage is a process to collect data used in research. Research data in the form of news 
files obtained through the process of taking data online on Indonesian news media sites. Research data 
collected 500 news from 5 categories. Online data retrieval process is done by determining Indonesian 
news media sites as data source, selecting of news issuance time, selecting of news categories, copying 
the selected news and saving it into a text file. 

2.2. Text Pre-Processing  
The tokenization stage is a process to parse the text into the smallest unit such as paragraphs, 
sentences or words. This process is done on 500 news text files that have been collected. The 
tokenization process is done by parsing the text into a word, eliminating punctuation or symbols or 
numbers and saving it into text file. 

Filtering stage is a process to eliminate meaningless words on text content based on stop words 
dictionary. This process is done on 500 tokenization files. The filtering process is done by matching 
each word with stop words dictionary. If it matches, the word is removed from the file. If it does not 
match, the word remains in the file. Then, saving the results into a text file. 

Stemming stage is a process to get the root word by removing affixes that attaches to the word. 
This process is done on 500 filtering files. The stemming process is done by matching each word with 
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prefix rules, suffix rules, and root word dictionary. If it matches, remove the prefix or suffix on the 
word. Then, saving the result into a text file. 

The re-filtering stage is a process to re-eliminate meaningless words on 500 stemming files. The re-
filtering process is done in the same way as filtering.  

2.3. Initialization 
The initialization stage is a process to assign initial values and topics to text units. This process is done 
on 500 re-filtering files. The initialization process is done by calculating a random value for each word 
and assigning topic for each word with a multinomial distribution based on a random value, as in (1), 
where K is total number of topic, n is total number of word, p is a probability [17]. 
 

Ԧሻ|ሺሬ݊Ԧ ൌ ∏ 
ሺೖሻ

ୀଵ ൌ ሺݐ݈ݑܯ ሬ݊Ԧ|Ԧ, 1ሻ    (1) 
 

2.4. Topic Sampling 
The topic sampling stage is the process of defining a new topic for each word in each text file. This 
process is done on 500 re-filtering files. The topic sampling process is done by decrementing the count 
of word-topic and document-topic matrix value. Then, calculating the probability value for each word, 
as in (2), where nkt is number of word n  to topic k, β is constant parameter for topic, nkm is number of 
topic k  for each word in a document, α is contanst parameter for word, W is total number of word in 
corpus, V is total number of unique word in corpus, K is total number of topic [17]. Then, determining 
new topic for each word with multinomial distribution based on the probability value. Then, 
incrementing the count of word-topic and document-topic matrix according to the new topic. All steps 
was repeating until it reach convergent condition, as in (3) where N is total number of unique word in 
corpus, zi is probability value for each word n [16]. 
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2.5. Evaluation 
The evaluation stage is a process to test the results of LDA method implementation on Indonesian text. 
Evaluation was done by comparing the result of document clustering between LDA and TF-IDF K-
Means method. The evaluation method used is Precision, Recall and F-Measure measurement metrics 
[18]. Precision P is calculated by dividing the number of retrieved relevant documents by the total 
number of retrieved documents, as in (4). Recall R is calculated by dividing the number of retrieved 
relevant documents by the total number of relevant documents, as in (5). F-Measure F is calculated 
from the mean weights of P and R, as in (6). 
 

ࡼ ൌ
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3. Results and Discussions 

3.1. Data Acquisition 
The data acquisition stage generates a corpus that is a collection of 500 text files divided into 5 
categories as in table 1. 
 

Table 1. Corpus. 
  

Category Number of Files
News 101 

Automotive 84 
Sport 116 

Technology 100 
Business 99 

 

3.2. Text Pre-Processing 
The text pre-processing stage generates several files with the number of text units as in table 2. The 
data in table 2 shows that the original source text has been parsed into 306,870 text units, and then 
they filtered, stemmed and re-filtered, so that resulted 113,968 units of meaningful text for further 
processing. 
 

Table 2. Text-Preprocessing File Results.
  

Step Number of Text Units 
Tokenization 306,870 

Filtering 192,934 
Stemming 119,022 

Re-Filtering 113,968 
 

3.3. Clustering with LDA Method 
The text units that were generated at the text processing stage are extracted by the LDA method to 
obtain the unique feature value of each text unit. The LDA process in this research used the number of 
K topic is 5 topics, the parameter value of α is 50/K and the parameter value of β is 0.01 [17]. 
Convergent condition is achieved at the eighth iteration. The LDA extraction generates the highest, 
lowest, and average feature values as in table 3.  

The LDA method also cluster 500 text files in the corpus automatically. The result of topics 
probability can be seen in figure 2. The x-axis on the graph shows the document number, while the y-
axis shows the probability value of each document for the five given topics. The color on the graph 
shows the topic. From the graph, it is seen that clustering with LDA method directs distributed 
documents across all topics, as shown by cluster color distribution. This result is in accordance with 
the real condition that a document can be categorized in several topics as mentioned in the 
introduction. 

 
Table 3. Result Values of LDA Method. 

  

Description Value of LDA 

Minimum 0.000193 

Maximum 0.999986 

Average 0.560795 
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Figure 2. Topics Probability Result for LDA. 
 

3.4. Clustering with TF IDF and K-Means Method 
In this research, as comparison data for the LDA method, the text units were also extracted by the TF 
IDF method to obtain the unique feature value of each text unit. The TF IDF extraction generates the 
highest, lowest and average feature values as in table 4. 

The extraction values are then used to cluster 500 text files in the corpus automatically using K-
Means method with 8 repetitions according to the convergent conditions achieved by the LDA 
method. The result of topics probability can be seen in figure 3. The x axis on the graph shows the 
document number, while the y-axis shows the probability value of each document for five topics 
given. The color on the graph shows the topic. From the graph, it is seen that clustering with TFIDF-
KMeans tends to lead a document for only one topic, as indicated by the blue, orange, and green 
cluster that was clear partitioned; while the other two groups are not so visible on the graph. This 
result has emphasized the weakness of the TFIDF method as mentioned in the introduction. 
 

Table 4. Result Value of TF IDF Method.
  

Description Value of TF IDF 
Minimum 0.000008 
Maximum 0.917112 
Average 0.000825 

 

3.5. Evaluation Results of Metric Measurement 
Evaluation for the performance of the LDA and the TFIDF-KMeans methods in extracting feature 
values are calculated using P, R and F measurement metrics. The reference data used are news text file 
that has been grouped in the original source.  

The evaluation results of the LDA methods are as in table 5. For news topic, the number of 
documents found is 118, while digital news sites manually classify 101 documents. This shows there 
is 17-news from other topics that clustered as news topic by the LDA method. Of the 118-news found, 
there are 90 news are relevant to manual classifying. 
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Figure 3. Topics Probability Result for TFIDF-KMeans. 

 
For automotive topic, the number of documents found is 95, while digital news sites manually 

classify 84 documents. This shows there are 11 news from other topics that are clustered as 
automotive topic by the LDA method. Of the 95-news found, there are 77 news are relevant to manual 
classifying. For sport topic, the number of documents found is 115, while digital news sites manually 
classify 116 documents. This shows there is 1 news that are not clustered to sport topic by the LDA 
method. Of the 115-news found, there are 109 news are relevant to manual classifying. For technology 
topic, the number of documents found is 68, while digital news sites manually classify 100 documents. 
This shows there are 32 news that are not clustered to technology topic by the LDA method. Of the 
68-news found, there are 85 news are relevant to manual classifying. This value exceeds the value of 
the document that was found due to the process of calculating the relevant documents found was 
directed to all topics. For business topic, the number of documents found is 104, while digital news 
sites manually classify 99 documents. This shows there are 5 news from other topics that are clustered 
as business topic by the LDA method. Of the 104-news found, there are 95 news are relevant to 
manual classifying.  

Table 5. Evaluation Result for LDA. 
 

Topic Number of Relevant 
Items Retrieved 

Number of 
Retrieved Items 

Number of 
Relevant Items 

News 90 118 101 
Automotive 77 95 84 

Sport 109 115 116 
Technology 85 68 100 

Business 95 104 99 
 
The evaluation results of the TFIDF-KMeans methods are as in table 6. For news topic, the number 

of documents found is 237, while digital news sites manually classify 101 documents. This shows 
there are 136 news from other topics that are clustered as news topic by the TFIDF-KMeans method. 
Of the 237-news found, there are only 28 news are relevant to manual classifying. For automotive 
topic, there is no document found, while digital news sites manually classify 84 documents. This 
shows there are 84 news that are not clustered to automotive topic by the TFIDF-KMeans method. For 
sport topic, the number of documents found is 2, while digital news sites manually classify 116 
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documents. This shows there is 114 news that are not clustered to sport topic by the TFIDF-KMeans 
method. For technology topic, the number of documents found is 261, while digital news sites 
manually classify 100 documents. This shows there are 161 news from other topics that are clustered 
as technology topic by the TFIDF-KMeans method. Of the 261-news found, there are 100 news are 
relevant to manual classifying. For business topic, there is no document found, while digital news sites 
manually classify 99 documents. This shows there are 99 news that are not clustered to business topic 
by the TFIDF-KMeans method. The value of relevant documents retrieved for automotive, sport and 
business topic exceeds the value of the document that was found, because the process of calculating 
the relevant documents that was found directed to all topics. 

 
Table 6. Evaluation Result for TFIDF-KMeans. 

 

Topic Number of Relevant 
Items Retrieved 

Number of 
Retrieved Items 

Number of 
Relevant Items 

News 28 237 101 
Automotive 2 0 84 

Sport 114 2 116 
Technology 100 261 100 

Business 17 0 99 
 
The average evaluation values of P, R and F for 500 text files of both methods are as in table 7, that 

were calculated based on the number of relevant documents found, the number of documents found 
and the number of documents relevant as described previously. The average evaluation values show 
the TFIDF- KMeans method has higher P than the LDA, but this is not a valid value because of greater 
than 1. This value was resulted because the value of relevant documents retrieved exceeds the value of 
the document that was found as mentioned previously. For R and F, the LDA method has higher than 
the TFIDF- KMeans. This is because the LDA method found the number of documents that relevant to 
the manual grouping by digital news site more than the TFIDF-KMeans method. So, it can conclude 
that the LDA method performs better than the TFIDF-KMeans method in extracting unique features of 
Indonesian text. In addition, the LDA method has a better ability to cluster Indonesian text than the 
TFIDF-KMeans method. 
 

Table 7. Metric Evaluation Result. 
   

Metrik LDA TFIDF-KMeans
Precision 0.9369 11.5003 

Recall 0.9114 0.4911 
F-Measure 0.9148 0.5304 

 

4. Conclusion 
The feature extraction in this research was implemented for 500 Indonesian text files using the LDA-
based topics method. Evaluation was done for 5 topics, parameter value α=50/K, parameter value 
β=0.01 and reached convergent condition at eighth iteration. The evaluation results show the average 
value of Precision, Recall and F-Measure are 0.9369, 0.9114 and 0.9148. For comparison, feature 
extraction is also done using TFIDF method and clustering by KMeans method with 8 iterations. The 
evaluation results show the average value of Precision, Recall and F-Measure are 11.5003, 0.4911 and 
0.5304. From these evaluation results, it can be concluded that the LDA method performs better in 
extracting unique features and clustering Indonesian text files than the TFIDF-KMeans method. 
Therefore, the LDA method can be a better reference method for extracting features of Indonesian 
text. 
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