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This research aims to investigate develcpmentmvater based phase change materials (PCM) for cold
thermal energy storage (CTES). Mixtures of water with small amount vegetable oil addition were chosen
as candidates of the PCM that were considered to be suitable for medium temperature refrigeration
application with temperature| e of products between —1°C and +5°C. The PCM candidates were
tested experimentally through and T-history method. The results showed that esters of vegetable oils
played veryimportant role on the solubility of the vegetable oil inwater. The esters made the investigated
vegetable oil (soya oil or corn oil) mix well in water solutions and they worked as nucleating agents that
could lower freezing point and reduce super-cooling of the water. It was found that addition of vegetable
oils by 5% to 10% in water solution could decrease the freezing temperature from 0°C down to
respectively —3.5°Cto —6.5°C and could also minimize degree of super-cooling of the PCM candidates.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

qlermal energy storage is considered as one of the most
perspective technologies for increasing the efficiency of energy
conversion processes and effective utilization of available sources
of heat [1,2]. In the last few years, much attention has been paid to
the latent heat thermal energy storage systems (LHTESS) due to
their various applications [ 3-6]. The technology is also effective to
red@® gap of unbalances between energy supply and demand [ 7-
10]. Among various applications of thermal energy storage, heat or
cold accumulation of temperature ranging from —50°C to 120 °C
has a greater market potential that can be carried out using wide
range of phase change materials (PCMs) [11]. Application of PCMs
as latent heat thermal energy storage (known as LHTES technique)
can provide larger capacity of energy storage per unit mass and
transfer heat at relatively constant temperature [12-16]. The
technique, therefore, can use a smaller size system with narrow
temperature range during phase change process compared with
sensible heat storage (SHS) [17-19].

For LHTES applications, many materials have been investigated.
They included organic, inorganic and mixture of both organic and
inorganic materials [20]. Materials with high thermal capacity and
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constant range of phase change temperature are considered as
good PCMs [21]. PCM made of organic solid-liquid has attracted
much attention to various applications for their excellence
properties [22-25]. Organic PCMs such as paraffin and fatty acid
are reported in [26,27]. Paraffin is the most popular organic PCM,
which has very small degree of super-cooling and wide range of
phase change temperature. Paraffin is also chemically stable
during phase change process [28]. However, paraffin waxes have
disadvantages due to their low thermal conductivities, low latent
heat, flammability and high change in volume [29].

Fatty acid (CH3 (CHz)2,—COOH) has advantages compared to
paraffin. Fatty acid has more accurate melting point, high latent
heat, conajent melting and solidification temperatures, small
degree of super-cooling, low vapor pressure, little volume change
during phase change process and low cost for energy storage.
Paraffin is also non-toxic, non-corrosive to metals, thermally and
chemically stable, and non-flammable [30-34]. However, fatty acid
has unpleasant odor compared with paraffin [35]. In order to
eliminate?e unpleasant odor, some researchers recommended
replacing them with their derivative fatty acid esters, which could
be obtai via the esterification of fatty acids with alcohols. The
effect of alcohols on the thermal properties of fatty acid esters was
relatively excessive [36].

The main drawback of TES technlbgy is how to develop
effective PCMs for storing energy [37]. Phase change temperature
and latent heat of fusion are the two basic parameters of PCMs [35].
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Therefore, the selection of PCMs with suitable phase change
temperature is critical [39]. Other parameters include thermal
stability and energy storage characteristics [40]. In addition, high
degree of super-cooling could make evaporation temperature of
refrigerator system lower and certainly reduce cooling efficiency |
414243).

Water is often employed as PCMs because of its reliability,
stability, low cost, high specific heat, high density, and high latent
heat capacity of 335 kJ/kg. Water also has good safety issue [44-
46). Furthermore, it has been implemented in many applications
especially in air conditioning systems for shifting peak loads.
Water, however, has a high degree of super-cooling [47,48]. Water
cannot be applied as PCM for CTES of operating temperatures
below 0°C, due to its freezing and melting point at 0°C [49,50].
One way to make water applicable as PCMs at below 0°C is by
adding nucleation agent to trigger heterogeneous nucleation and
to eliminate its super-cooling [51].

A PCM for medium temperature refrigeration application
should be able to maintain product temperatures between —1°C
and +5°C. In this application, evaporating temperature of
refrigeration system is usually lower than —8°C [52]. PCMs
utilized for this application, therefore, should be melting and
freezing at temperature range between —6°C and —4°C with
assumption that the PCM would be placed in the inlet-air after
evaporator. Such PCMs could be organic based materials (paraffin),
salt solutions, or water based materials [53 ]. For salt-based PCMs,
their freezing and melting temperatures can be lo d down by
increasing salt concentration of the PCM solution. However, salt
solutions are corrosive and have lower latent heat than water |
54,55,56]. Another way to squeeze down freezing and melting
temperatures of water is by adding antifreeze liquid [57].

To date, there are few studies on utilization of organic PCMs
made of water with nucleating agents of vegetable oils. Vegetable
oil contains various types of fatty acids. Fatty acids and their fatty
acid ester or eutectic mixtures also have many superior properties
as organic PCM materials [58-61]. Fatty acid esters are new
material for organic PCMs. Unfortunately very limited thermal data
is available in literatures [62]. Fatty acids are derivatives of
materials readily found in nature and labeled as bio-based
materials [63]. Another advantage of water based PCMs with
vegetable oil nucleating agent is that vegetable oils offer a
continuous supply [64-66].

This paper reports an investigation on very small vegetable oil
(soya and corn oil ester) solution in tap water as PCM material
alternatives for medium temperature refrigeration applications.
The little amount of vegetable oil ester in the investigated water
solution would make properties of the solution similar to the
physical and thermal properties of water. This could make the

solution become strong PCM candidates for below 0 °C tempera-
ture applications. Other results such as super-cooling of water and
the influence of vegetable oil addition in reducing super-cooling of
the PCM candidates are also discussed. This paper also explains
how water and vegetable oil ester can properly be mixed to become
applicable PCM solutions.

2. Experimental
2.1. Materials

Materials tested in this study were natural ester oils commonly
called “vegetable oils" extracted from soya bean and corn. These
vegetable oils were used without further purification. Soya and
corn oil esters were chosen because they contain poly-unsaturated
fatty acids (PUFA) which make its freezing and melting temper-
atures relatively low. Chemical composition of soya and corn oil
ester was tested with Gas Chromatography Mass Spectrometry
(GCMS). The testresults are presented in Tables 1 and 2. The tables
show that commercial soya and corn oil esters are composed
mainly by methyl esters of 53.89% and 38.54%, respectively. The
soya and corn oil also contains benzene (16.4%) and (17.45%), 1,3-
cyclohexadiene (6.85%) and (8.29%), beta-sesquiphellandrene
(11.55%) and (23.83%), and others of about 11.68% and 11.89%.

The main composition of soya and corn oil esters is methyl ester.
Methyl ester is a small ester with single carbon chain. Small esters
are soluble in water. Esters are derived from carboxylic acids in
which one hydroxyl (—OH) group replaced by one alkyl (—0)
group [61]. In water solutions, certain acid molecules of ester
having —OH cluster would be ionized Ia‘eleasing hydrogen (H)
atom to generate ion H*. Although esters can't hydrogen bond with
themselves but esters can hydrogen bond with water molecules.
One of the slightly positive hydrogen atoms in a water molecule
can be sufficiently attracted to one of the single pairs on one of the
oxygen atoms in an ester for a hydrogen bond to be formed. There
is also, of course, dispersion forces and dipole-dipole attractions
between the ester and the water molecules. Forming these
attractions releases energy. This helps to supply the energy
needed to separate water molecule fromwater molecule and ester
molecule from ester molecule before they can mix together [67].
This explains why small esters (soya and corn oil esters) dissolve|
water. In higher chain esters such as ethyl and propyl esters, as
chain lengths increases, the hydrocarbon parts of the ester
molecules start to get in the way. By forcing themselves between
water molecules, they break the relatively strong hydrogen bonds
between water molecules without replacing them. This makes the
process energetically less profitable, and so solubility of esters
decreases.

Table 1
Chemical composition of commercial soya-oil ester
Component name Formula Area (%)
Benzene, 1-(1,5-dimethyl-4-hexenyl) CysHaa 16.04
Zingiberene, 1,3-Cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl) CysHay 6.85
Cyclohexene, 1-methyl-4-(5-methyl-1-methylene-4-hexenyl) CisHaq 11.32
Dodecanoic acid, methyl ester (CAS) Methyl laurate CyaHa6045 5.30
4-Octenoic acid, methyl ester CaH1602 0.59
Beta-sesquiphellandrene CysHay 11.55
6,7-Dihydrox 1314-pentaphenetetrone CaaHg0s 0.36
Hexadecanoic acid, methyl ester CizH34042 12.64
ecanoic acid, (2.2-dimethyl-13-dioxolan-4-yl) methyl ester CigHa404
xadecanoic acid, (2,2-dimethyl-1,3-dioxolan-4-yl) methyl ester CaaHan 04 2414
2-Heptadecanone, 1- (2.2-dimethyl-1,3-dioxolan-4-yl) methoxy CaHya04
10-Octadecenoic acid, methyl ester CigH3502 5.79
Monadecanoic acid, methyl ester CagHap 0z 543
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Table 2
Chemical composition of commercial corn-oil ester.

Component name Formula Area (%)

3-lsopropoxy-1,1,17.7.7-hexamethyl-3,5,5-tris (trimethylsiloxy) CigHs2045i7 061

Benzene, 1-(1,5-dimethyl-4-hexenyl) CysHaa 17.45

13-Cyclohexadiene, 5-(15-dimethyl-4-hexenyl) CysHay 829

Copaene CysHay 028

8-MNonenoic acid, 5,7-Dimethylene-, methylester CiaHg 0z 050

Cyclohexene, 1-methyl-4-( 5-methyl-1-methylene-4-hexenyl) CisHaq 845

Dodecanoic acid, methyl ester CyaHa6045 1092

Beta-sesquiphellandrene CysHay 2383

Hexadecanoic acid, methyl ester CizH3405 1328

3-Butoxy-1, 7.7-hexamethyl-3,5,5-tris (trimethfslloxy) CigHs4 05507 0.68

Dodecanoic acid, {2 .2-dimethyl-1,3-dioxolan-4-yl) methyl ester CigHa404

Hexadecanoic acid, (2,2-dimethyl-1,3-dioxolan-4-yl) methyl ester CaaHan 04 2495

2-Heptadecanone, 1- (2.2-dimethyl-1,3-dioxolan-4-yl) methoxy CaHa404

Anodendroside G, monoacetate CaaHa 04y 048

9-Octadecenoic acid (Z), methyl ester CigH3502

7-Hexadecenoic acid, methyl ester CizH3205 621

9-Octadecenoic acid, methyl ester CigH3502

Cyclopropanebutanoic acid CasHyn 05 138
Oxiraneoctanoic acid, 3-octyl, methyl ester, trans CigH3504

Heptasiloxane, hexadecamethyl CigHas0sSi7 163

Octadecanoic acid, methyl ester CigHa04 199

Heptasiloxane, hexadecamethyl CigHas0sSi7 106

2.2, Preparation of water based PCM with vegetable oil solution

Pure water generally freezes at 0°C. Establishing energy
conservation at temperature below 0°C, two type substances
can be mixed in their eutectic proportion to attain the lowest
eutectic temperature i.e. phase change temperature. To reduce
phase change temperature of pure water, vegetable oil was applied
as a dispersed phase in tap water as the continuous phase. The
water based PCMs were prepared at different vegetable oil solution
concentrations (in% volume) which were: 5%, 7.5%, and 10% soya or
corn oil ester in tap water. Volume of each tested PCM sample was
prepared to be 10ml (10 cc). Other concentrations of oil solutions
such as 15%, 20%, and 25% have also been investigated for low
temperature refrigeration applications but they are not included in
this paper.

There was not special treatment to be conducted concerning
dispersion of corn or soya oil ester homogeneously in water. A
simple mixing method was applied by gently shaking the test tube
less than 1 min is considered sufficient. This is because of the
investigated oil esters are soluble in water as describe previously.

2.3. Characterization of the water based PCM

Differential Scanning Calorimetry (DSC) method was used to
measure thermal properties of tap water with different percen-
tages of nucleate agents (as PCM samples). The melting tempera-
ture (Ty,), freezing temperature (Ty), latent heat of melting ( AH,,),
and latent heat of freezing (AHy) are the main interest of CTES
systems. Each PCM sample was placed in a sealed aluminum
crucible pan cooled from 25 “C to — 100 °C and heated ba¥k to 25 °C
at a cooling and heating rate of 2 °C per minute with a constant
stream of nitrogen gas at flow rate of 20 ml per minute. The largest
deviation in enthalpy measurement was +£2% and the largest
deviation in temperature measurements was +=0.01°C. A semi
analytical digital balance (accuracy +0.00001 g) was also used to
measure the weight of the samples (mg) for the DSC test. The
melting and crystallization points were taken as onset temper-
atures. The latent heat of PCM sample was determined by
nugrical integration of the area of the peak of thermal transition.

though the phase change temperatures and latent heat of the
materials could be measured by the DSC system, the specimen
used in DSC was very small (about 10-30 mg) which led to high

super-cooling particularly for samples that contain water, which
was not applicable for practical use. Degree of super-cooling is an
important parameter for PCMs. For pure water, super-cooling
indicates existence of liquid water at temperature below 0°C,
while for PCM it implies the existence of liquid phase PCM at
temperatures below its freezing point. A PCM with high super-
cooling would consequently require much lower evaporation
temperature when applied in a refrigeration system and would
accordingly reduce energy performance of the system. Moreover,
before freezing, energy stored in PCMs is only in the form of
sensible heat that provides a very small storage capacity. Degree of
super-cooling for PCM candidates, therefore, was also tested with
different method which considered to be more applicablf
Schematic diagram of the super-cooling measurement system 1s
shown in Fig. 1. It can be seen that the measurement system
comprises a thermostatic bath and a data logging system.

Fig. 1 shows that PCM candidates (PCM sample) were contained
in glass tubes and inserted into cooling medium of the water bath.
The cooling medium was mixture of 40% (by volume) polypropyl-
ene glycol. A pump circulated the cooling medium through
evaporator of a refrigeration system where it was cooled.
Temperature of cooling medium can reach —25°C. For the test,
however, temperature of the cooling medium was maintained
stable at —20°C by using digital thermostat with accuracy of
+02°C. 9

The datalogging system shownin Fig. 1 was equipped with data
acquisition modules and a computer for recording or display
system. The data acquisition modules utilized a Datascan 7000
series from MSL (Measurement System Ltd.) which included a
Datascan measurement processor 7320 and expansion modules
7020. Each Datascan module contained 16 differential input
channels, indivi@3ally configurable for voltage and thermocouple
measurements. [-type thermocouples were applied to measure
temperatures of the PCM candidates and the cooling medium. The
thermodBfiples had temperature measurement range from
—250 °Cto 350°Cwith specific error of £0.5 *C. The thermocouples
wefEicalibrated using a calibration bath and precision thermome-
ter of uncertainty £0.04°C. The temperature range of calibration
was —25°C to 50 °C.

For the most part, enthalpy curves of PCMs were measured
either via DSC (Perkin Elmer DSC 8000) or via the T-History
method, but rarely with both methods. Combined DSC and T-
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Fig. 1. Schematic diagram of experimental test equipment using T-history method.

History measurements allow an improved determination of
enthalpy curves of PCM, since intrinsic material properties could
be separated from properties of the investigated sample and
effects of the applied methods.

3. Results and discussion
3.1. T-history test results

Fig. 2 shows temperature variation in the center of PCM
samples with time as results of cooling process in water bath with
constant temperature of about —20°C. The figure illustrates super-
cooling behavior of tap and mineral water during the cooling
process. It can also be seen that temperatures of both samples
decrease sharply to —3.5°C at around 50 s and relatively slower
when the temperatures reach —8.5°C at around 200 s. Then ice

nucleation starts appearing and sample Emperature rises to 0°C.
At this temperature level water is freezing and the temperature in
the center of the PCM samples relatively constant for about 200 s.
After freezing, temperature of the samples decreases toward the
temperature of water bath.

Fig. 3 shows temperatures of freezing and super-cooling for tap
and mineral water. From the figure, it can be seen that tap and pure
water have not been frozen yet at temperature reaching —7.5°C
and —8.5°C respectively. This is super-cooling effect of tap and
pure water with degree of super-cooling of 75K and 85K
respectively (Fig. 4). Degree of super-cooling of tap water differs
from pure water. This is due to purity of water. The less pure the
water the lower the degree of super-cooling. This indicates that the
impurity in water acts as nucleate agents [68,69]. Therefore
nucleate agents are required to reduce degree of super-cooling of
pure water. The esters of corn oil and soya oil were used as
nucleating agents in this paper. Nucleate agents usually used for

Supercooling degree

[/

Ice nucleation delay
Initial formation of

/solid ice layer

10
Complete formation of
=€ solid ice layer
s 04 Growth ice crystal
A —Tap water
= .
E ‘ ——Mineral water
= -10 A
g ——Bath
g 151
-
= -20
-25 : } : : : } : i
0 2 4 6 8 10 12 14 16 18
Time (100 5)

Fig. 2. Temperature in the center of samples at bath temperature of —-20°C.
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Fig. 3. Freezing and super-cooling temperatures of water with different nucleate agent concentrations.

water are sodium chloride (NaCl) and glycol, which were also
investigated and discussed in this paper.

Fig. 3 also shows that by dissolving salt or propylene glycol can
drop the freezing point of water down to below 0 °C. This may
explain that freezing point of a solution is the temperature in
which vapor pressure of solution and solvent are equal. The
solution would not freeze at 0°C when vapor pressure of the
solution was lower than vapor pressure of the solvent (water). In
order to freeze the solution, its temperature therefore should be
lowered. When the solvent (water) was freezing, its vapor pressure
would drop more quickly than the liquid solution. As the result at
temperature level below solvent freezing point, vapor pressures of
both solvent and the solution were equalized. At this condition, the
solvent would freeze while the solute was still in liquid phase. This
caused the solution to become concentrated and resulted in lower
freezing point.

The influence of adding salt or polypropylene glycol into tap
water to degree of super-cooling is shown in Fig. 4. From the figure,
it can be known that addition of salt into tap water increases the
super-cooling. For tap water, degree of super-cooling was found to
be 75K while for salt solution ranged from 105K to 12K
(depending on salt concentrations). Addition of polypropylene
glycol into tap water, however, could significantly reduce degree of

super-cooling. Solutions of 10%, 20% and 30% polypropylene glycol
in tap water could trim down degree of super-cooling to 7K,35K
and 1.5 K respectively.

Figs. 5-7 show cooling process of PCM samples that include
small vegetable oil (soya or corn oil ester) solution in tap water of
different concentrations. Water bath temperature was maintained
at —20°C. Generally, temperatures of the samples change with
time at three stages. Firstly, the temperatures drop sharply.
Secondly, the temperatures remain constant within a certain
period. These temperatures are expected to be freezing points.
Thirdly, the temperatures decrease relatively smoother toward
water bath temperature. At the first and second stages, the effects
of soya and corn oil esters to tap water were reasonably similar.
However, at the third stage the effects were slightly diverse.

From Figs. 5-7 it can also be seen that soya and corn oil esters
are able to reduce the freezing point of tap water with similar
effects. Soya or corn oil ester of concentration 5%, 7.5%, and 10% can
drop freezing temperature of tap water from 0°C down to —4°C,
—5°C,and —6.5°C respectively for soyaoil esterand —3.5°C, -5°C,
and —6.5 °C respectively for corn oil ester. Surprisingly, soya and
corn oil esters could totally reduce super-cooling of the tap water.

Fig. 8 shows freezing temperatures of tap water and solutions of
soya or corn oil ester with different concentrations. It can be seen

814
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@ 10 1 ®

'u - .

» 1 .

= 67

(=}

:

2?1 o

a o0 + g ' 4 + 4 i
1 2 3 1 5 6 7

1.Tap water, 2. Mineral water, 3. Salt solution, 4. Salt solution
increasing, 5. 10% propylenglycol, 6. 20% propylenglycol,
7.30% propylenglycol

Fig. 4. Degree of super-cooling for water with different nucleate agent concentrations.
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Fig. 5. Cooling process of 5% soya or corn oil in tap water solutions.
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Fig. 6. Cooling process of 7.5% sova or corn oil in tap water solutions.

that soya and corn oil esters have almost similar effect to freezing
temperature. They can significantly drop the freezing temperature
of tap water almost proportionally with solution concentrations.
The higher the concentration of soya or corn oil ester, the lower the
freezing temperature of the solutions. This indicates that solutions
of soya or corn oil ester in tap water can be considered as PCM
candidates for applications at temperature level below 0 °C with
thermo-physical properties are close to water.

Effects of soya and corn oil esters to degree of super-cooling are
shown in Fig. 9. From the figure, it can be known that soyaand corn

oil esters can amazingly suppress super-cooling of tap water at any
level of solution concentrations. This figure also emphasizes
cooling process of the solutions without showing any super-
cooling effects as discussed previously (Figs. 5-7). During freezing
process, the temperature profile of PCM samples (Figs. 5-7)
differed from those occurred on tap water (Fig. 2). This happened
due to addition of vegetable oils into the PCM samples.
Crystallization process of PCM samples involves combination of
nucleus forming and ice crystal growth inside of a crystal structure.
Change of water into crystal requires nucleus in order to trigger

5
e O = 10% Corn oil ester
o
L S5+ 10% Soya oil ester
£
.; 10 4 Bath
g -15
£ 20 -
= -25 ‘ } ' | | 4 4 }
0 2 E 6 8 10 12 14 16 I8
Time (100 s)

Fig. 7. Cooling process of 10% sova or corn oil in tap water solutions.
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Fig. 9. Degree of super-cooling of tap water with different nucleate agents and
concentrations.

freezing. Formation of ice crystal starts after nucleation and the
water molecules join the nuclei that are being formed. Molecules
compound occurred according to the appropriate size of required
molecules to withstand and provide nuclei for crystal growing [ 70].
In the absent of nucleate particles, tap water could resist its state in
super-cooled condition up to —42°C (—43.6°F, 231K) before
freezing homogenously [71,72]. Fig. 2 shows that the tap water is
super-cooled to around —8°C before the ice formation started.
Addition of soya and corn oil esters into the tap water could
improve heterogenic nucleation. Soya and corn oil esters were able
to initiate formation of nuclei at relatively warm temperature into
approaching the freezing point. Water molecules merged with
nuclei that were already formed in the solution. This could increase
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Fig. 10. DSC curve of tap water for heating-cooling cycle.
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Fig. 11. DSC curve of corn oil in water (5/95 vol®) binary mixture for heating-
cooling cycle.

the area of crystal growth until a stable state of solution was
achieved and no more crystal was formed. Due to the presence of
nucleate material, the freezing point of PCM substance would be at
the same point of its melting point. The exact nucleate potential of
each kind of PCM substance, however, widely varied depending on
the proper solution conditions. Soya and corn oil solutions were
able to reduce or even eliminate super-cooling due to two reasons:
(i) faster nucleation and (ii) decrease of freezing point. The
decrease of freezing point was caused by the fact that the addition
of soya or corn oil produced ions that strengthen intermolecular
forces among solvent and solute particles. The stronger particles
attracting force released much higher energy to reach the freezing
point, hence the freezing point decreased.

3.2. DSC thermal analysis

DSC analyses have been conducted to measure the thermal
properties of the PCM samples. Fig. 10 shows the DSC curve for
heating and cooling processes of the tap water. The measurement
results showed that melting and freezing temperatures of tap
water were 0°C and —19.5°C, respectively. While latent heat of

113 —m
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Fig. 12. DSC curve of soya oil in water (5/95 vol.%) binary mixture for heating-
cooling cycle.
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melting and freezing was respectively found to be 297.44 /g and
102.39]/g.

As there is no delay in the melting phenomenon, the melting
temperature is 0 °C. This temperature is thermodynamic equilib-
rium temperature between ice and water. The energy released
during freezing evidenced on the DSC result as an exothermic peak
with imperfect bell shape. The apex temperature of the peak might
be correlated to the amount of super-cooling. It is noteworthy that
whatever the sample size, ice melts at 0°C [73]. On the contrary,
freezing occurs at different temperatures, depending on the water
sample size [74]. From nucleation theory, it has been shown that
the smaller the volume the lower the freezing temperature. For
water, freezing occurred at around — 14 °C at a volume of 1 cm® and
around —24°C at a volume of 1 mm? while for micro-sized
droplets (1 wm?) freezing was found around —39°C [75]. The
energy released during the freezing process evidenced on the DSC
result as an exothermic peak with imperfect bell shape when
compared with melting process. The temperature difference
between two intense exothermic peaks during cooling cycles
may be correlated to the amount of super-cooling degree. Degree
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Fig. 14. DSC curve of soya oil in water (7.5/92.5 vol.%) binary mixture for heating-
cooling cycle.
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Fig. 15. DSC curve of corn oil in water (10/90vol®) binary mixture for heating-
cooling cyce.

of super-cooling depend on surface conditions, cooling rate, liquid
volume and nucleate agent [76]. 7

The wvariations thermal properties (melting and freezing
temperatures, latent heat) of 5%, 7.5% and 10% corn or soya oil
ester in water mixture of the PCM samples are shown in Figs. 11-
16. The addition of corn and soya oil esters could reduce the super-
cooling. The super-cooling was smaller at higher corn or soya oil
concentrations. It is shown by perfect bell shape exothermic peak.
This is because the solution of corn or soya oil esters worked as
nucleating agent that promoted faster freezing process and lower
freezing temperature.

The results also show that a complete process of crystallization,
which can be seen in Figs. 10-16, is very fast because with only one
nucleus may initiate the solidification and simultaneously nucle-
ation occurs. Therefore, a significant amount of energy is released
in avery short time, and that is the reason why the first part of the
exothermic freezing peak is so sharp. The freezing temperatures
vary fromone sample to another, because nucleationis a stochastic
phenomenon.
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Table 3

Thermal energy storages properties of tap water and vegetable oil in water mixture.

nergy Storage 15 (2018) 368-378

Samples (Vol®) DSC

T-history

Heating process

Cooling process

Cooling process

Melting temp. (Tm,

Latent heat of melting (AH,,, Freezing temp. (T, Latent heat of freezing (AH;, Freezing temp. (T, Supercooling degree
) )

0 Jig) Jig) (K)
Tap water i} 207.4346 195 102.3901 i} 75
Mineral water - - - - o 85
5(95 (com OfW) 4.5 227.7869 22 103.3005 3.5 19
5(95 (soya O/W) -4 230.6752 19 95.0448 4 2
75/92.5 (corn Of -6 222.6904 20 1203212 5 16
W)
75/92.5 (soya O] 5.5 2245967 14 134.9992 5 15
W)
10/90 (corn Of 7.5 171.7235 25 135.2141 6.5 12
W)
10/90 (soyaO/W) -8 185.9391 22 1202324 6.5 11

OfW=0il ester in water.

The corresponding data of thermal properties resulted from T-
history and DSC tests are also summarized in Table 3. From the
table it can be seen that the melting point of water with the DSC
and the freezing point of water with T-history is 0°C. The test
results showed DSC melting temperature of corn oil — tap water
(corn O/W) and soya oil — twater (soya O/W)samples (5/95,75/
92.5 and 10/90 vol.%) were in the range from —4.5°C to —7.5 °C for
corn oil ester and from —4°Cto —8 “Cfor soya oil esterrespectively.
Melting and freezing latent heat varied in the range of 171.72 —
230.68 J/g and 95.05 — 135.21 respectively. While based on the
T-history, freezing points are in the range from —3.5°Cto —6.5°C
for corn oil esterand —4°C to —6.5 °C for soya oil esterrespectively.

Overall, six samples were developed with different volume
fractions of vegetable oils (soya or corn oil) and tap water with
proper mixing. The results acquired from DSC and T-history tests
indicated that the phase transition temperatures of vegetable oil in
water mixture were lower than the temperatures ofZhe individual
tap water. The melting and freezing temperatures of the mixture
followed a downturn with the increase in concentration of
vegetable oil in water could significantly reduce the degree of
super-cooling.

This suggested that small vegetable oil solution in water
mixture as PCMs has high latent heat and suitable and/or
adjustable phase transition of melting and crystallization temper-
atures, and this would be highly desired for applications. However,
there were small discrepancies between the melting temperature
of DSC and freezing temperature of T-history test results. The
differences between the results were most probably due to two
factors: (i) the presence of a certain amount of impurities of the
vegetable oils used in the mixture and (ii) the delayresponse due to
thermal inertia of the temperature sensor at T-history analysis |
77,78 ]. For the freezing temperature of DSC, the value is far fromits
melting temperature. DSC test data for water based PCM is strongly
influenced by the sample size, the smaller the size of the sample
the larger the difference as described previously [73].

These properties indicate that the vegetable oil in water
solutions are promising PCM candidates to store and to release
energy for medium temperature refrigeration applications. More-
over, they have better odor and non-corrosive properties as well as
potential usage for energy storage at below zero working
temperature.

4. Conclusions
Materials, which possess good potential for PCMs applied at

medium temperature refrigeration, have been investigated in this
paper. The investigated PCM candidates were mixture of vegetable

11
oil in water solutions. The vegetable oils investigated %’e corn
and soya oil esters. It was found that corn and soya oil esters
substantially contained small ester {methyl ester) which made the
vegetable oils soluble in water.

The PCM candidates were considered to be good candidates for
thermal storage at temperature level below 0°C. The PCM
candidates contained 5%, 7.5%, and 10% soya or corn oil ester.
The PCMs were found to be able to reduce freezing temperature of
pure water from 0 °C down to respectively for soya oil water PCM
candidates: —4°C, —5°C, and —6.5°C while for corn oil in water
PCM candidates: —3.5°C, —5.5°C, and —6.5°C respectively.

Only small amount of nucleate agent (soya or corn oil ester) was
required for the PCM solutions, make the soya oil or corn oil in
water solution become very good P aterial candidates. The
PCM candidates were found to have therr hysical properties
that were close to properties of tap water. Melting latent heat of
the PCM candidates varied in the range of 171.72-230.68 ] /g, while
tap water had melting latent heat of 297.44 ]/g. The investigation
also showed that t CM candidates had better property than
water due to their small degree of super-cooling especially for
medium temperature refrigeration applications.
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