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Abstract— Object recognition is a comy vision techniq

to detect the semantic of objects either in digital images or videos
then to identify those objects into a particular class. This
intelligent technigue can be used for various applications. In this
study, object recognition is implemented for real-time plastic
waste detection and classification using YOLOw3. Six macro
plastic waste classes are proposed, namely plastic bag, plastic
bottle, crushed bottle, cup, cartoon, and straw. These six
[\ ies are lly g the top of our daily plastic waste.
This classification of plastics waste aims to make the sorting task
more efficient both at home and recycling center. Using around
1858 images and 2000 iterations during dataset training, results
show that the detection achieves a good confidence value for
plastic bottle and cartoon class which is 85% and 75%
consecutively. Meanwhile, straw achieves 65% and the others
are between 30 and 40%. This means the algorithm can detect
and classify the plastic waste correctly. However, the further
review of images used in the dataset in terms of item variety,
angle, lighting, and image resolution, as well as increase the
iteration number during the training phase, are required to gain
a higher confidence value.

Keywords—plastic waste detection, computer vision, object
recognition, YOLOW3, intelligent system

1. INTRODUCTION

Object recognition is one of the most prominent research
tracks for computer vision [1]. How the object recognition
work is first by feeding the computer images of the same type
of'object. Second, it finds common identifving features. Third,
it uses these features to detect and identify the same objects in
new images or real-time video. Object recognition with deep
learning is being widely used not only in the industry right
now [2] but also it is promising being implemented in the
community level or even in the household scale. One
promising application of object recognition is for waste
management especially to detect and classify plastic waste, As
the use of plastic is prevalent, plastic waste becomes a
complex problem because it has a substantial impact not only
on land and ocean but also on humans and animals. If it is not
handled suitably, this potentially causes an unprecedented
environmental crisis in the long term. Recognizing various
plastics waste by appropriate classes will make the sorting task
more efficient both at home and recycling center. However.
the challenges could be the sufficiency of the training dataset
that will be representative of the plastic waste model that will
be applied to. This is due to the very diverse of plastic wastes
in shapes, colors. and dimensions. Also, they have absorbance
and reflectance characteristics in a certain spectrum.

Some works in the intelligent system have been done to
classify garbage. The work of [3] classified waste into six
classes consisting of glass, paper, metal, plastic, cardboard.
and trash. Then, they created an image dataset that contains
around 400-500 images for each class. Meanwhile, using this
image dataset, [4] tried Hybrid Transfer Learning (HTL) for
classification and Faster R-CNN to get region proposals for

978-1-7281-9567-4/20/831.00 ©2020 [EEE

Ida Bagus Irawan Purnama
FElectrical Engineering Department
Politeknik Negeri Bali, Indonesia
ida.purnamar@pnb.ac.id

652

I Made Sumerta Yasa
Electrical Engineering Department
Politeknik Negeri Bali, Indonesia
sumertayasa6 | @pnb.ac.id

object detection. Then., [5] applied a machine learning
approach using Convolutional Neural Network (CNN) as the
detector with Support Vector Machine (SVM) as the classifier
and achieved an accuracy of 87% on that dataset. These works
need at least two algorithms for detection and classification.

YOLO (You Only Look Once) was initially introduced as
the first object recognition model that integrated object
classification and bounding box prediction into a single
regression problem [2]. It is one of the popular algorithms in
object recognition right now because it gains good accuracy
along with being able to operate in real-time, YOLO has been
used for various purposes of detection ranging from remote
sensing [6]. vehicle and traffic flow [7-9], cyelists [10] to
fruits detection [11]. Different from the sliding window
technique, the YOLO algorithm "seen just once" at the image
then requires only one forward propagation pass through the
network for making predictions. After non-max suppression.
it gives the class name of the recognized object along with the
bounding boxes around them and their level of confidence.
These bounding boxes are not as random or arbitrary
rectangles, but as an offset from one of the preconfigured
bounding boxes called anchor boxes. In YOLOv3, it uses a
package of dimensions to generate these anchor frames.

From the aforementioned context, this study aims to make
a custom plastic waste dataset and implement object
recognition using YOLOV3 in real-time to detect the plastic
object, then to identify them into the correct classes. In this
case, six classes of macro plastics are proposed, namely plastic
bag. plastic bottle, crushed bottle. cup. cartoon, and straw.

II. YOLOV3 THEORY

A. Bounding Boxes and Anchor Box

The use of bounding boxes for object detection makes only
one object that can be identified by a grid. Therefore. for
detecting more than one object anchor box is used. In YOLO,
anchor boxes are used to predict bounding boxes in different
sizes where the midpoint is placed in a similar cell, Fig. 1.

Anchor box 1: Anchor box 2:

Fig. 1. Gnd cells and anchor box

Consider the above figure. in that both the human and the
car’s midpoint come under a similar grid cell. The red color
grid cells represent the two anchor boxes of those objects [1].
Any number of anchor boxes can be used for one image to
detect multiple objects. Changing the anchor boxes number
leads to a change in the length of ground truth and prediction
array. In that figure, two anchor boxes have been taken.
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B. YOLO Detection Process

The main concept of the YOLO framework is to split the
entire input image into grid cells with S x § dimensions. Then.
it makes detections in each grid cell by predicting B bounding
boxes along with the confidence level of these boxes [11].
Here, confidence indicates the existence of an object in the
grid cell. If it exists, the prediction of object and loU
(Intersection over Union) of the Ground Truth (GT) are used
to calculate the confidence value as formulated in:

Confidence = Pr(Object) x loU(GT, pred) (n
where Pr(Object) E [0,1] and fol is the ratio of intersection
of two boxes to the union of the boxes as shown in Fig. 2 [1].

Intersection Union
a, -32
B B,

Fig. 2. Intersection over Union (ToLl)
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Besides the probability of the object (p) and bounding box
specifying object location which consists of a center (x,3) and
high width of the box (hw), each grid cell also predicts C
class probabilities corresponding to a class of an object. So.
there will be 5+C deseriptors for each cell as shown in Fig 3.

y=(p,b,b,b, b, )

Fig. 3. Predicted values (descriptors) for each cell.

Now, each cell has a responsibility to predict a few
different things. Firstly, it is responsible for predicting some
number of bounding boxes and confidence value for every
single bounding box. If there is no object in some grid cells,
the confidence value will be very low for that cell. When all
of'these predictions are pictured. a map of all the objects with
a bunch of boxes that is ranked by their confidence value will
be gained. Secondly, each cell is responsible for predicting
class probabilities. But, this does not mean that some grid cell
contains some object, this is just a probability. Hence. if a
grid cell predicts a dog. it does not mean that there is a dog,
it just means that if there is an object then that object is a dog.

{Bwnding box + cnnﬁdeﬂ%

Final detection

S x 8 grid input

Class probability map
Fig. 4. YOLO detection process
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1. MATERIAL AND METHOD

The experiment method in this study is conducted in four
steps as depicted in Fig. 5.

Training
Collecting Labelling custom Testing
training using * dataset in * dataset via
images Labellmg Google web-cam
Collab

Fig. 5. The four steps of experiment method.

The first step is collecting images for training data, which
is what the model will use to find identifying features of
objects in prediction. We collected random images of plastic
waste from the internet. Afterward, they are classified into six
classes, namely plastic bag. plastic bottle, crushed bottle, cup.
cartoon, and straw, Fig. 6. In total, 1858 images of plastic
waste are collected. Each category consists of 492, 245, 297,
368, 131, 325 images of the plastic bag, plastic bottle, crushed
bottle, cup, cartoon, and straw consecutively.

Pl

R "L HR

Fig. 6. The proposed six classes of the plastic waste

The second step is labeling the images. To train the object
detector, it needs to supervise its learning with bounding box
annotations. We have to draw a box around each object that
we would like the detector to focus on. Then, give every box
a label with the object class that we want the detector to
predict. This study used the Labellmg annotation tool to draw
the bounding boxes around plastic objects on the images and
label them as their class. A label file will be created for each
image where both label files and their respective image files
are kept together. Fig. 7. In drawing of bounding boxes. some
useful things should be followed such as label around the
object in question, label obstructed objects entirely, and avoid
too much space around the object in question. It is best to draw
bounding boxes that include the entire objects, even if there is
a small amount of space between the bounding box and the
object. In other words, do not cut out any of the underlying
objects with the bounding boxes.

ke arhed cunbed cabad anmved crahed
bomieTLisg bttt betielivy bt bt bottistl g bomdd bt i el
R i 5
ﬂ p g = .
i = -
cuthes <mied crashed ke enahed cruthad mmed creshed
bosieiting Ectiia.od berieitlieg oy ecredtpg ot bostieit g emena

Fig. 7. Example of images and their respective label files for crushed bottle

The third step is to train our custom dataset for some
iteration (batches) to get weight results. This specific model is
a one-shot learner. This means each image only gets through
the network once before making a prediction. This also allows
the architecture to be good enough, viewing up to a certain fps
(frame per second) in predicting with video feeds. YOLOv3
splits an image into subcomponents. Then, after running
convolutions on each of the subcomponents, it pools back to
make a prediction. To power our model’s computation,
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Google Colab is used. It provides free GPU compute resources
(up to 24 hours with your browser open).

The last step is to test the model based on the flowchart
below. Then, the following Python seript is used by feeding
the web-cam new objects of plastic that are not in the dataset.
The experiment is conducted for a single object and multi
objects. Whether it could detect and identify the plastic object
class correctly is then examined.

Load YOLO
{weight and
Lontlgumtmn file)

Define c]ass of
objects

v
(e ]

Detection
active?

Camera release

Detect objects and
resize [rame

F 9

v

Bounding box and
class prediction

No

lgnore the
bounding box

Yes +

ldentifying the class
confidence and
bounding box

v

Applying the non
maximum suppression

v

Output video of
detected object with
box, text and fps

Fig. 8 Flowchart of testing YOLOv3 model

The Python script derived from the flowchart uses dnn
module of OpenCV version 2. It has a deep learning library
that can work with YOLOv3. To run the algorithm, it needs
two files: (1) Weight file which is the trained model, the core
of'the algorithm to detect the objects, (2) Cfg file which is the
configuration file, where there are all the settings of the
algorithm. Meanwhile, classes contain the name of the objects
that the algorithm can detect. The full image on the network

cannot be used right away, but first. it needs to convert into
blob. Here, blob is used to extract features from the image and
to resize them where we use sizes 320%320. [t is small so less
accuracy but better speed. The threshold confidence is set to
0.2. When performing the detection. it happens that for the
same object it has more boxes. so a function called Non-max
Suppression is used to remove this “noise”. Finally, box, label,
confidence, and Ips are shown on the screen.

import cv2
import numpy as np
import time

# Loading Yolo

net = ev2dnn readNet( "yolov3 1mumu, last. ueu_h:s yolov3_cuslcm.c1'g"}
classes = [plastic bag','plastic bottle’, 'straw’, " carton’, 'cup', ‘crushed bottle’]
layer_names = net.getLayerNames( )

output_layers = [layer_names[i[0] - 1] for 1 in net. getUnconnected OutLayers()]
colors = np.random.uniform(0, 235, size=(len{classes), 3})

# Loading camera
cap = ¢v2 VideoCapture(0)
font = ev2. FONT_HERSHEY SIMPLEX
starting_time = time.time{ )
frame_id =0
while True:
_, frame = cap readi)
frame_id += 1
height, width, channels = frame. shape

# Detecting objects

blob = cv2.dnn blobFromlImage(frame, 0.00392, (320, 320), (0, 0, 0}, True,
crop=TFalse)

net.setInput(blob)

outs = net forward(output_layers)

# Showing informations on the screen
class_ids =[]

confidences =[]

boxes =[]

for out in outs:
for detection in out:

scores = detection[3:]

class_id = np.argmax{scores)

confidence = scores[class_id]

if confidence = 0.2:
# Objects are detected
midpoint_x = int{detection[0] * width)
midpoint_y = int{d n[1] * height)
w = int{detection[2] * width)
b = int(detection[3] * height)

# Rectangle coordinates are created

X = intimidpoint_x - w/ 2)

v = int(midpoint_y -h/ 2)
boxes.append([x, v. w, h])

confidence ] = confidence*100
confidences.append( float(confidence1))
class_ids.append(class_id)

indexes = ev2.dnn NMSBoxes(boxes, confidences, 0.4, 0.3)

for i in range(len{boxes)):
if i in indexes:

x, ¥, w, h = boxes[i]
label = striclasses[elass_ids[i]])
confidence = confidences[i]
color = colors|class_ids[i]]
ev2.rectanglel frame, (x, y). (x + w. y + h). color. 2}
ev2.rectanglel frame, (x, y). (x = w, y + 30), color, -1)
cv2 putTexti frame, label + " " + str(round(confidence, 2))+™%", (x, v + 30),
font, 1, (255,255.255), 3)

clapsed_time = time time( ) - starting_time
fps = frame_id / elapsed_time
ov2 put Text(frame."FPS: "+sti{round|{ fps, 2)), (10, 50), font.1. (235, 255, 255).3)
cv2.imshow("Image", frame)
key = ew2 waitKevi1)
if key == 27: #This is ESC kevboard
break

cap.release()
ev2.destroy AllWindows()
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IV. RESULTS AND DISCUSSION

This section presents the real-time experiment results
using a CPU core i7 with its camera. It also discusses their
significances. The further implementation of this algorithm
for practical use using embedded devices is presented too.

A. Real-Time Detection Results

By holding the object in front of the camera, Fig. 9 shows
the real-time detection and identification results for each class
of plastic waste. The aim of holding the object instead of
placing them steady on the table is to get the moving object
effect so that the bounding box can follow the object shifting.

FPS: 1.63  carton 74.6%

(a) Plastic bottle

(b} Cartoon

FPS: 1.59 strow 65.46%

cup 43.99%

() Straw

FPS: 1.57
crushed bottle 31.69%

plastic bag 37.17%

(&) Plastic bag (&) Crushed bottle

Fig. 9. Real-time detection results of single object

The plastic bottle and cartoon are detected with high
confidence of 85.33% and 74.6% successively. Then, straw is
detected with the middle level of confidence which is 65.46%
and the cup. plastic bag, and crushed bottle are between 30%
and 40%. In this case, the hand which holds the objects is not
detected because it is not in the dataset. Table I below shows
the confidence values of single and multi-object detection.

TABLE 1. DETECTION RESULTS

Plastic objects : : Conﬁ{!ence Detect'i:)n : :
In Single Object Detection|  In Multi-ohject Detection

Plastic Bottle 85.3% 82.1%, 87.8%, 88.5%
Cartoon T4.6% 33.5%. 30.8%, 37.2%
Straw 63.4% 39.6%, 34.6%

Cup 43.9% 27.3%, 33.3%, 23.7%
Plastic Bag 37.1% 65.12%
Crushed Bottle 31.6% 23.6%, 38.1%, 36.6%
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In multi-object detection, only the plastic bottle can
maintain a high confidence value, relatively above 80%. This
means that the training dataset for the plastic bottle is enough
to keep its confidence level. Meanwhile, the cartoon drops to
around 30%. Other objects are still in low confidence value.
Fig. 10 shows the image detection for all multi-objects. Here,
the detection of the class is still correct but the confidence
other than the plastic bottle is still low. This indicates that
different angles and positions of the object may affect the
confidence so that retrain the dataset with more objects is
needed. FPS (Frame per Second) shows the frame rate which
is the speed at which those images are shown on the screen.

: 1.51
straw 39.69%

crushed bottle 23.65%

corton 33.57%

(a) Straw and plastic bottle (b} Crushed bottle and cartoon
—

FPS: 1.5

o

plastic bottle 87.82%
carten 30.82%

cup 27.32%

(c) Plastic bag and cup (d) Plastic bottle, cartoon and cup

-
FPS: 1.48

plostic bottle BB8.5.

crushed bottle 36.R9%

cup 23.75%

(e) Straw, crushed bottle and cartoon (1) Crushed, plastic bottle, and cup

Fig. 10. Real-time detection results of multi objects

B. Results Discussion and Practical Application

The experiment results show that all objects can be
identified and classified correctly. but only two classes
achieve a good level of confidence which is higher than 70%
in single object detection and only one in multi objects
detection. The position of the object during detection has a
significant impact especially for objects with irregular forms
such as plastic bags and crushed bottles. If objects are visually
dissimilar, the model had trouble in finding common
identifying features. This indicates that not all angle positions
of images are available in the dataset. Therefore, reexamining
images used in the dataset could be useful.

As the code here does not use the Graphics Processing
Unit (GPU) capabilities of the system for image processing,
the required to process the frames only by CPU is extensive.
This results in a very low FPS and displays latency. To process
a frame and also display the bounding box over the detected
objects, the trained model requires about 0.6 seconds. The
detection performance can be significantly improved by
making use of the GPU in the respective system [1]. The
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detection fails for the objects that are far from the camera view
due to the images in the training dataset had the objects to be
detected in focus and thus had more object frame to the size
of the image ratio [1]. The model performs better in the
environment with optimum lighting conditions. Also, cleaning
and augmenting image data in terms of angle and image
resolution could improve the ultimate model’s performance.
Retraining the dataset with higher iteration is also useful.

For practical use. this algorithm can be deployed into
embedded devices so it can then be combined with mechanical
devices for a plastic waste management application. As the
algorithm is written in Python, Raspberry Pi 4 with 4 GB can
be used. However, this YOLOv3 may need higher resources
to run so that Raspberry Pi 4 with a webcam can be combined
with the aid of Google Coral USB accelerator or Intel
Movidius NCS to make it faster, Fig. 11. But, if near real-time
detection cannot be achieved with this plan, Tiny-YOLO can
be the alternative.

S clo‘e\ ~

(a) Coral USB Accelerator

(b) Raspberry Pi, Webcam and Coral

Fig. 11. Embedded devices for object detection.

After the algorithm running in the embedded device, it
can be further used for a real application in intelligent waste
segregator and sorter. It may need mechanical devices and
structures such as motor, conveyor, and selector so that it can
automatically throw the plastic waste to the specilic bin or
thrash container based on their classes as soon as they are
recognized. Thereby, this will make waste management more
efticient.

V. CONCLUSION

This study focusses on plastic waste detection and
classification using the object recognition technique. Dataset
is built using 1858 images where six classes of macro plastic
waste are proposed, namely plastic bag, plastic bottle, crushed
bottle, cup, cartoon, and straw. These six classes are usually
among the top of our daily plastic waste. Dataset was trained
by 2000 iteration. The real-time object detection experiment
using YOLOvV3 has been conducted to identify plastic waste
from each category using a built-in camera in a CPU Core i7.
Results show that single object detection achieves a good
confidence value for plastic bottle and cartoon category which
is 85% and 75% consecutively. Meanwhile, straw achieves
65% and the others are between 30 and 40%. This means the
algorithm can detect and identify the plastic waste correctly.
However, the further review of images used in the dataset in
terms of item variety. angle, lighting, and image resolution, as
well as increase the iteration number during the training phase,
are required to gain a higher confidence value. This algorithm
also can be deployed into embedded devices for practical use
with the aid of an accelerator to make it faster.
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